File size: 26,401 Bytes
33087bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
854f347
33087bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
---
base_model:
- zerofata/MS3.2-PaintedFantasy-Visage-v2-33B
library_name: transformers
tags:
- mergekit
- merge
- axolotl
license: apache-2.0
---
<style>
.container {
  --primary-accent: #EC83B1;
  --secondary-accent: #86C5E5;
  --tertiary-accent: #FDE484;
  --accent-rose: #F8A5C2;
  
  --bg-main: #1A1D2E;
  --bg-container: #232741;
  --bg-card: rgba(40, 45, 70, 0.7);
  
  --text-main: #E8ECF0;
  --text-muted: #B8C2D0;
  --white: #FFFFFF;
  
  --font-title: 'Inter', serif;
  --font-heading: 'Inter', serif;
  --font-body: 'Inter', serif;
  --font-code: 'JetBrains Mono', monospace;

  font-family: var(--font-body);
  color: var(--text-main);
  line-height: 1.6;
  
  max-width: 1200px;
  margin: 20px auto;
  padding: 40px 20px;
  background-color: var(--bg-container);
  background-image:
    radial-gradient(circle at 20% 80%, rgba(236, 131, 177, 0.04) 0%, transparent 50%),
    radial-gradient(circle at 80% 20%, rgba(134, 197, 229, 0.04) 0%, transparent 50%),
    radial-gradient(circle at 40% 40%, rgba(253, 228, 132, 0.02) 0%, transparent 50%);
  min-height: calc(100vh - 40px);
  border: 1px solid var(--primary-accent);
  border-radius: 8px;
  box-shadow: 0 8px 32px rgba(236, 131, 177, 0.07);
}

.container .title-container {
  background-color: var(--bg-main);
  position: relative;
  overflow: hidden;
  margin-bottom: 40px;
  border-left: 3px solid var(--primary-accent);
  box-shadow: 0 6px 20px rgba(236, 131, 177, 0.07);
}

.container .title-wrapper {
  position: relative;
  z-index: 2;
  padding: 25px 20px 30px 30px;
  font-family: var(--font-title);
}

.container .title-main {
  color: var(--accent-rose);
  font-size: 2.5rem;
  font-weight: 700;
  margin: 0;
  letter-spacing: 2px;
  display: inline-block;
  position: relative;
  text-transform: uppercase;
}

.container .title-prefix {
  position: relative;
  z-index: 2;
}

.container .lemonade-text {
  color: var(--secondary-accent);
  position: relative;
  z-index: 2;
  margin-left: 0.2em;
  text-shadow: 0 0 15px var(--secondary-accent);
}

.container .title-subtitle {
  padding-left: 15px;
  margin-top: 5px;
  margin-left: 5px;
}

.container .subtitle-text {
  color: var(--text-muted);
  font-size: 1.2rem;
  font-family: var(--font-body);
  font-weight: 300;
  letter-spacing: 3px;
  text-transform: uppercase;
  display: inline-block;
}

.container .glitchy-overlay {
  position: absolute;
  top: 0;
  left: 0;
  width: 100%;
  height: 100%;
  background-image: repeating-linear-gradient(0deg, rgba(0,0,0,0) 0, rgba(134, 197, 229, 0.08) 1px, rgba(0,0,0,0) 2px);
  z-index: 1;
}

.container img {
  max-width: 100%;
  border: 3px solid var(--white);
  margin-bottom: 30px;
  box-shadow: 0 0 15px rgba(0, 0, 0, 0.3);
}

.container .section-container {
  background-color: var(--bg-card);
  margin-bottom: 30px;
  position: relative;
  overflow: hidden;
  border-bottom: none !important;
  box-shadow: 0 4px 15px rgba(236, 131, 177, 0.05);
}

.container .section-header {
  display: flex;
  align-items: center;
  background-color: rgba(236, 131, 177, 0.12);
  padding: 10px 20px;
  border-bottom: none !important;
}

.container .section-indicator {
  width: 8px;
  height: 20px;
  background-color: var(--primary-accent);
  margin-right: 15px;
  box-shadow: 0 0 8px rgba(236, 131, 177, 0.2);
}

.container .section-title {
  font-family: var(--font-heading);
  color: var(--accent-rose);
  font-size: 1.4rem;
  margin: 0 !important;
  padding: 0 !important;
  letter-spacing: 1px;
  font-weight: 400;
  text-transform: capitalize;
  border-bottom: none !important;
}

.container .section-content {
  padding: 20px;
  font-family: var(--font-body);
  color: var(--text-main);
  line-height: 1.6;
}

.container .subheading {
  color: var(--text-muted);
  font-size: 1.1rem;
  margin-top: 20px;
  margin-bottom: 15px;
  font-weight: 400;
  border-bottom: 1px dashed rgba(184, 194, 208, 0.4);
  display: inline-block;
  text-transform: uppercase;
  letter-spacing: 1px;
  font-family: var(--font-heading);
}

.container .data-box {
  background-color: rgba(26, 29, 46, 0.6);
  padding: 15px;
  border-left: 2px solid var(--primary-accent);
  margin-bottom: 20px;
  box-shadow: 0 2px 10px rgba(236, 131, 177, 0.05);
}

.container .data-row {
  display: flex;
  margin-bottom: 8px;
  align-items: center;
}
.container .data-row:last-child { margin-bottom: 0; }

.container .data-arrow {
  color: var(--primary-accent);
  width: 20px;
  display: inline-block;
}

.container .data-label {
  color: var(--text-muted);
  width: 80px;
  display: inline-block;
}

.container a {
  color: var(--secondary-accent);
  text-decoration: none;
  font-weight: 600;
  transition: color .3s;
}

.container a:hover {
  text-decoration: underline;
  color: var(--accent-rose);
}

.container .data-box a {
  position: relative;
  background-image: linear-gradient(to top, var(--primary-accent), var(--primary-accent));
  background-position: 0 100%;
  background-repeat: no-repeat;
  background-size: 0% 2px;
  transition: background-size .3s, color .3s;
}

.container .data-box a:hover {
  color: var(--primary-accent);
  background-size: 100% 2px;
}

.container .dropdown-container {
  margin-top: 20px;
}

.container .dropdown-summary {
  cursor: pointer;
  padding: 10px 0;
  border-bottom: 1px dashed rgba(184, 194, 208, 0.4);
  color: var(--text-muted);
  font-size: 1.1rem;
  font-weight: 400;
  text-transform: uppercase;
  letter-spacing: 1px;
  font-family: var(--font-heading);
  list-style: none;
  display: flex;
  align-items: center;
}

.container .dropdown-summary::-webkit-details-marker {
  display: none;
}

.container .dropdown-arrow {
  color: var(--primary-accent);
  margin-right: 10px;
  transition: transform 0.3s ease;
}

.container details[open] .dropdown-arrow {
  transform: rotate(90deg);
}

.container .dropdown-content {
  margin-top: 15px;
  padding: 15px;
  background-color: rgba(26, 29, 46, 0.6);
  border-left: 2px solid var(--primary-accent);
  box-shadow: 0 2px 10px rgba(236, 131, 177, 0.05);
}

.container .config-title {
  color: var(--text-muted);
  font-size: 1rem;
  margin-bottom: 10px;
  font-family: var(--font-heading);
  text-transform: uppercase;
  letter-spacing: 1px;
}

.container pre {
  background-color: var(--bg-main);
  padding: 15px;
  border: 1px solid rgba(134, 197, 229, 0.4);
  white-space: pre-wrap;
  word-wrap: break-word;
  color: var(--text-main);
  border-radius: 4px;
}

.container code {
  font-family: var(--font-code);
  background: transparent;
  padding: 0;
}
</style>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <title>Painted Fantasy</title>
  <link rel="preconnect" href="https://fonts.googleapis.com">
  <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
  <link href="https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600;700&family=JetBrains+Mono:wght@400;700&display=swap" rel="stylesheet">
</head>
<body>

<div class="container">
  <div class="title-container">
    <div class="glitchy-overlay"></div>
    <div class="title-wrapper">
      <h1 class="title-main">
        <span class="title-prefix">PAINTED FANTASY</span>
        <span class="lemonade-text">VISAGE v2</span>
      </h1>
      <div class="title-subtitle">
        <span class="subtitle-text">Mistrall Small 3.2 Upscaled 33B</span>
      </div>
    </div>
  </div>

![image/png](https://cdn-uploads.huggingface.co/production/uploads/65b19c6c638328850e12d38c/9FaT1DO7_b0B_sea1LiP7.png)

  <div class="section-container">
    <div class="section-header">
      <div class="section-indicator"></div>
      <h2 class="section-title">Overview</h2>
    </div>
    <div class="section-content">
      <p>A surprisingly difficult model to work with. Removing the repetition was coming at the expense of the unique creativity the original upscale had.</p>
      <p>Decided on upscaling Painted Fantasy v2, healing it and then merging the original upscale back in.</p>
      <p>The result is a smarter, uncensored, creative model that excels at character driven RP / ERP where characters are portrayed creatively and proactively.</p>
    </div>
  </div>

  <div class="section-container">
    <div class="section-header">
      <div class="section-indicator"></div>
      <h2 class="section-title">SillyTavern Settings</h2>
    </div>
    <div class="section-content">
      <h3 class="subheading">Recommended Roleplay Format</h3>
      <div class="data-box">
        <div class="data-row">
            <span class="data-arrow">></span>
            <span class="data-label">Actions:</span>
            <span>In plaintext</span>
        </div>
      <div class="data-row">
            <span class="data-arrow">></span>
            <span class="data-label">Dialogue:</span>
            <span>"In quotes"</span>
      </div>
      <div class="data-row">
            <span class="data-arrow">></span>
            <span class="data-label">Thoughts:</span>
            <span>*In asterisks*</span>
      </div>
      </div>
      <h3 class="subheading">Recommended Samplers</h3>
      <div class="data-box">
        <div class="data-row">
          <span class="data-arrow">></span>
          <span class="data-label">Temp:</span>
          <span>0.6</span>
        </div>
        <div class="data-row">
          <span class="data-arrow">></span>
          <span class="data-label">MinP:</span>
          <span>0.05 - 0.1</span>
        </div>
        <div class="data-row">
          <span class="data-arrow">></span>
          <span class="data-label">TopP:</span>
          <span>0.9 - 1.0</span>
        </div>
        <div class="data-row">
          <span class="data-arrow">></span>
          <span class="data-label">Dry:</span>
          <span>0.8, 1.75, 4</span>
        </div>
      </div>
      <h3 class="subheading">Instruct</h3>
      <div class="data-box">
        <p style="margin: 0;">Mistral v7 Tekken</p>
      </div>
    </div>
  </div>

  <div class="section-container">
    <div class="section-header">
      <div class="section-indicator"></div>
      <h2 class="section-title">Quantizations</h2>
    </div>
    <div class="section-content">
      <div style="margin-bottom: 20px;">
        <h3 class="subheading">GGUF</h3>
        <div class="data-box">
          <div class="data-row">
            <span class="data-arrow">></span>
            <a href="https://huggingface.co/bartowski/zerofata_MS3.2-PaintedFantasy-Visage-v2-33B-GGUF">iMatrix (bartowski)</a>
          </div>
        </div>
      </div>
      <div>
        <h3 class="subheading">EXL3</h3>
        <div class="data-box">
          <div class="data-row">
            <span class="data-arrow">></span>
            <a href="https://huggingface.co/zerofata/MS3.2-PaintedFantasy-Visage-v2-33B-exl3-3bpw">3bpw</a>
          </div>
          <div class="data-row">
            <span class="data-arrow">></span>
            <a href="https://huggingface.co/zerofata/MS3.2-PaintedFantasy-Visage-v2-33B-exl3-4bpw">4bpw</a>
          </div>
          <div class="data-row">
            <span class="data-arrow">></span>
            <a href="https://huggingface.co/zerofata/MS3.2-PaintedFantasy-Visage-v2-33B-exl3-5bpw">5bpw</a>
          </div>
          <div class="data-row">
            <span class="data-arrow">></span>
            <a href="https://huggingface.co/zerofata/MS3.2-PaintedFantasy-Visage-v2-33B-exl3-6bpw">6bpw</a>
          </div>
        </div>
      </div>
    </div>
  </div>

  <div class="section-container">
    <div class="section-header">
      <div class="section-indicator"></div>
      <h2 class="section-title">Creation Process</h2>
    </div>
    <div class="section-content">
      <p>Creation Process: Upscale > PT > SFT > KTO > DPO</p>
      <p>Pretrained on approx 300MB of light novels, stories and FineWeb-2 corpus.</p>
      <p>SFT on approx 8 million tokens, SFW / NSFW RP, stories and creative instruct data.</p>
      <p>KTO on antirep data created from the SFT datasets. Rejected examples generated by MS3.2 with repetition_penalty=0.9 and OOC commands encouraging it to misgender, impersonate user etc.</p>
      <p>DPO on a high quality RP / NSFW dataset that is unreleased using rejected samples created in the same method as KTO.</p>
      <p>Resulting model was non repetitive, but had lost some of the spark the original upscale had. Merged the original upscale back in, making sure to not reintroduce repetition.</p>
              <div class="dropdown-container">
          <details>
            <summary class="dropdown-summary">
              <span class="dropdown-arrow">></span>
              Mergekit configs
            </summary>
            <div class="dropdown-content">
              <p>Merge configurations used during the model creation process.</p>
              <div class="config-title">Initial Upscale (Passthrough)</div>
              <pre><code>base_model: zerofata/MS3.2-PaintedFantasy-v2-24B
<br>
merge_method: passthrough
<br>
dtype: bfloat16
slices:
  - sources:
      - model: zerofata/MS3.2-PaintedFantasy-v2-24B
        layer_range: [0, 29]
  - sources:
      - model: zerofata/MS3.2-PaintedFantasy-v2-24B
        layer_range: [10, 39]</code></pre>
              <div class="config-title">Final Merge (Slerp)</div>
              <pre><code>models:
  - model: zerofata/MS3.2-PaintedFantasy-Visage-33B
  - model: ../axolotl/Visage-V2-PT-1-SFT-2-KTO-1-DPO-1/merged
merge_method: slerp
base_model: ../axolotl/Visage-V2-PT-1-SFT-2-KTO-1-DPO-1/merged
parameters:
  t: [0.4, 0.2, 0, 0.2, 0.4]
dtype: bfloat16</code></pre>
            </div>
          </details>
        </div>
        <div class="dropdown-container">
          <details>
            <summary class="dropdown-summary">
              <span class="dropdown-arrow">></span>
              Axolotl configs
            </summary>
          <div class="dropdown-content">
            <p>Not optimized for cost / performance efficiency, YMMV.</p>
            <div class="config-title">Pretrain 4*H100</div>
            <pre><code>&#35; ====================
&#35; MODEL CONFIGURATION
&#35; ====================
base_model: ../mergekit/pf_v2_upscale
model_type: MistralForCausalLM
tokenizer_type: AutoTokenizer
chat_template: mistral_v7_tekken
&#35; ====================
&#35; DATASET CONFIGURATION
&#35; ====================
datasets:
  - path: ./data/pretrain_dataset_v5_stripped.jsonl
    type: completion
<br>
dataset_prepared_path:
train_on_inputs: false  &#35; Only train on assistant responses
<br>
&#35; ====================
&#35; QLORA CONFIGURATION
&#35; ====================
adapter: qlora
load_in_4bit: true
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
&#35; lora_modules_to_save:  &#35; Uncomment only if you added NEW tokens
<br>
&#35; ====================
&#35; TRAINING PARAMETERS
&#35; ====================
num_epochs: 1
micro_batch_size: 4
gradient_accumulation_steps: 1
learning_rate: 4e-5
optimizer: paged_adamw_8bit
lr_scheduler: rex
warmup_ratio: 0.05
weight_decay: 0.01
max_grad_norm: 1.0
<br>
&#35; ====================
&#35; SEQUENCE &amp; PACKING
&#35; ====================
sequence_len: 12288
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
<br>
&#35; ====================
&#35; HARDWARE OPTIMIZATIONS
&#35; ====================
bf16: auto
flash_attention: true
gradient_checkpointing: offload
deepspeed: deepspeed_configs/zero1.json
<br>
plugins:
  - axolotl.integrations.liger.LigerPlugin
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
cut_cross_entropy: true
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_cross_entropy: false  &#35; Cut Cross Entropy overrides this
liger_fused_linear_cross_entropy: false  &#35; Cut Cross Entropy overrides this
<br>
&#35; ====================
&#35; EVALUATION &amp; CHECKPOINTING
&#35; ====================
save_strategy: steps
save_steps: 40
save_total_limit: 5  &#35; Keep best + last few checkpoints
load_best_model_at_end: true
greater_is_better: false
<br>
&#35; ====================
&#35; LOGGING &amp; OUTPUT
&#35; ====================
output_dir: ./Visage-V2-PT-1
logging_steps: 2
save_safetensors: true
<br>
&#35; ====================
&#35; WANDB TRACKING
&#35; ====================
wandb_project: Visage-V2-PT
&#35; wandb_entity: your_entity
wandb_name: Visage-V2-PT-1</code></pre>
            <div class="config-title">SFT 4*H100</div>
            <pre><code>&#35; ====================
&#35; MODEL CONFIGURATION
&#35; ====================
base_model: ./Visage-V2-PT-1/merged
model_type: MistralForCausalLM
tokenizer_type: AutoTokenizer
chat_template: mistral_v7_tekken
<br>
&#35; ====================
&#35; DATASET CONFIGURATION
&#35; ====================
datasets:
  - path: ./data/automated_dataset.jsonl
    type: chat_template
    split: train
    chat_template_strategy: tokenizer
    field_messages: messages
    message_property_mappings:
      role: role
      content: content
    roles:
      user: ["user"]
      assistant: ["assistant"]
      system: ["system"]
  - path: ./data/handcrafted_dataset.jsonl
    type: chat_template
    split: train
    chat_template_strategy: tokenizer
    field_messages: messages
    message_property_mappings:
      role: role
      content: content
    roles:
      user: ["user"]
      assistant: ["assistant"]
      system: ["system"]
  - path: ./data/instruct_dataset.jsonl
    type: chat_template
    split: train
    chat_template_strategy: tokenizer
    field_messages: messages
    message_property_mappings:
      role: role
      content: content
    roles:
      user: ["user"]
      assistant: ["assistant"]
      system: ["system"]
  - path: ./data/cw_dataset.jsonl
    type: chat_template
    split: train
    chat_template_strategy: tokenizer
    field_messages: messages
    message_property_mappings:
      role: role
      content: content
    roles:
      user: ["user"]
      assistant: ["assistant"]
      system: ["system"]
  - path: ./data/stories_dataset.jsonl
    type: chat_template
    split: train
    chat_template_strategy: tokenizer
    field_messages: messages
    message_property_mappings:
      role: role
      content: content
    roles:
      user: ["user"]
      assistant: ["assistant"]
      system: ["system"]
  - path: ./data/cw_claude_dataset.jsonl
    type: chat_template
    split: train
    chat_template_strategy: tokenizer
    field_messages: messages
    message_property_mappings:
      role: role
      content: content
    roles:
      user: ["user"]
      assistant: ["assistant"]
      system: ["system"]
  - path: ./data/summaries_dataset.jsonl
    type: chat_template
    split: train
    chat_template_strategy: tokenizer
    field_messages: messages
    message_property_mappings:
      role: role
      content: content
    roles:
      user: ["user"]
      assistant: ["assistant"]
      system: ["system"]
<br>
dataset_prepared_path:
train_on_inputs: false  &#35; Only train on assistant responses
<br>
&#35; ====================
&#35; QLORA CONFIGURATION
&#35; ====================
adapter: qlora
load_in_4bit: true
lora_r: 128
lora_alpha: 128
lora_dropout: 0.1
lora_target_linear: true
&#35; lora_modules_to_save:  &#35; Uncomment only if you added NEW tokens
<br>
&#35; ====================
&#35; TRAINING PARAMETERS
&#35; ====================
num_epochs: 2
micro_batch_size: 2
gradient_accumulation_steps: 1
learning_rate: 1e-5
optimizer: paged_adamw_8bit
lr_scheduler: rex
warmup_ratio: 0.05
weight_decay: 0.01
max_grad_norm: 1.0
<br>
&#35; ====================
&#35; SEQUENCE &amp; PACKING
&#35; ====================
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
<br>
&#35; ====================
&#35; HARDWARE OPTIMIZATIONS
&#35; ====================
bf16: auto
flash_attention: true
gradient_checkpointing: offload
deepspeed: deepspeed_configs/zero1.json
<br>
plugins:
  - axolotl.integrations.liger.LigerPlugin
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
cut_cross_entropy: true
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_cross_entropy: false  &#35; Cut Cross Entropy overrides this
liger_fused_linear_cross_entropy: false  &#35; Cut Cross Entropy overrides this
<br>
<br>
&#35; ====================
&#35; EVALUATION &amp; CHECKPOINTING
&#35; ====================
save_strategy: steps
save_steps: 20
save_total_limit: 5  &#35; Keep best + last few checkpoints
load_best_model_at_end: true
metric_for_best_model: eval_loss
greater_is_better: false
<br>
&#35; ====================
&#35; LOGGING &amp; OUTPUT
&#35; ====================
output_dir: ./Visage-V2-PT-1-SFT-2
logging_steps: 2
save_safetensors: true
<br>
&#35; ====================
&#35; WANDB TRACKING
&#35; ====================
wandb_project: Visage-V2-SFT
&#35; wandb_entity: your_entity
wandb_name: Visage-V2-PT-1-SFT-2</code></pre>
            <div class="config-title">KTO 4*H100</div>
            <pre><code>&#35; ====================
&#35; MODEL CONFIGURATION
&#35; ====================
base_model: ./Visage-V2-PT-1-SFT-2/merged
model_type: MistralForCausalLM
tokenizer_type: AutoTokenizer
chat_template: mistral_v7_tekken
<br>
&#35; ====================
&#35; RL/DPO CONFIGURATION
&#35; ====================
rl: kto
rl_beta: 0.1
kto_desirable_weight: 1.25
kto_undesirable_weight: 1.0
<br>
&#35; ====================
&#35; DATASET CONFIGURATION
&#35; ====================
datasets:
  - path: ./handcrafted_dataset_kto.jsonl
    type: llama3.argilla
  - path: ./approved_rp_dataset_kto.jsonl
    type: llama3.argilla
  - path: ./instruct_dataset_kto.jsonl
    type: llama3.argilla
dataset_prepared_path:
train_on_inputs: false  &#35; Only train on assistant responses
remove_unused_columns: False
<br>
&#35; ====================
&#35; QLORA CONFIGURATION
&#35; ====================
adapter: qlora
load_in_4bit: true
lora_r: 32
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
&#35; lora_modules_to_save:  &#35; Uncomment only if you added NEW tokens
<br>
&#35; ====================
&#35; TRAINING PARAMETERS
&#35; ====================
num_epochs: 1
micro_batch_size: 4
gradient_accumulation_steps: 4
learning_rate: 5e-6
optimizer: adamw_8bit
lr_scheduler: cosine
warmup_steps: 15
weight_decay: 0.001
max_grad_norm: 0.01
<br>
&#35; ====================
&#35; SEQUENCE CONFIGURATION
&#35; ====================
sequence_len: 8192
pad_to_sequence_len: true
<br>
&#35; ====================
&#35; HARDWARE OPTIMIZATIONS
&#35; ====================
bf16: auto
tf32: false
flash_attention: true
gradient_checkpointing: offload
deepspeed: deepspeed_configs/zero1.json
<br>
plugins:
  - axolotl.integrations.liger.LigerPlugin
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
cut_cross_entropy: true
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_cross_entropy: false  &#35; Cut Cross Entropy overrides this
liger_fused_linear_cross_entropy: false  &#35; Cut Cross Entropy overrides this
<br>
&#35; ====================
&#35; CHECKPOINTING
&#35; ====================
save_steps: 100
save_total_limit: 10
load_best_model_at_end: true
metric_for_best_model: eval_loss
greater_is_better: false
<br>
&#35; ====================
&#35; LOGGING &amp; OUTPUT
&#35; ====================
output_dir: ./Visage-V2-PT-1-SFT-2-KTO-1
logging_steps: 2
save_safetensors: true
<br>
&#35; ====================
&#35; WANDB TRACKING
&#35; ====================
wandb_project: Visage-V2-KTO
&#35; wandb_entity: your_entity
wandb_name: Visage-V2-PT-1-SFT-2-KTO-1</code></pre>
            <div class="config-title">DPO 4*H100</div>
            <pre><code>&#35; ====================
&#35; MODEL CONFIGURATION
&#35; ====================
base_model: ./Visage-V2-PT-1-SFT-2/merged
model_type: MistralForCausalLM
tokenizer_type: AutoTokenizer
chat_template: mistral_v7_tekken
<br>
&#35; ====================
&#35; RL/DPO CONFIGURATION
&#35; ====================
rl: dpo
rl_beta: 0.1
<br>
&#35; ====================
&#35; DATASET CONFIGURATION
&#35; ====================
datasets:
  - path: ./handcrafted_dataset_mistral_rep.jsonl
    type: chat_template.default
    field_messages: messages
    field_chosen: chosen
    field_rejected: rejected
    message_property_mappings:
      role: role
      content: content
    roles:
      system: ["system"]
      user: ["user"]
      assistant: ["assistant"]
dataset_prepared_path:
train_on_inputs: false  &#35; Only train on assistant responses
<br>
&#35; ====================
&#35; QLORA CONFIGURATION
&#35; ====================
adapter: qlora
load_in_4bit: true
lora_r: 16
lora_alpha: 32
lora_dropout: 0.1
lora_target_linear: true
&#35; lora_modules_to_save:  &#35; Uncomment only if you added NEW tokens
<br>
&#35; ====================
&#35; TRAINING PARAMETERS
&#35; ====================
num_epochs: 1
micro_batch_size: 2
gradient_accumulation_steps: 1
learning_rate: 2e-6
optimizer: adamw_8bit
lr_scheduler: cosine
warmup_steps: 5
weight_decay: 0.01
max_grad_norm: 1.0
<br>
&#35; ====================
&#35; SEQUENCE CONFIGURATION
&#35; ====================
sequence_len: 8192
pad_to_sequence_len: true
<br>
&#35; ====================
&#35; HARDWARE OPTIMIZATIONS
&#35; ====================
bf16: auto
tf32: false
flash_attention: true
gradient_checkpointing: offload
deepspeed: deepspeed_configs/zero1.json
<br>
plugins:
  - axolotl.integrations.liger.LigerPlugin
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
cut_cross_entropy: true
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_cross_entropy: false  &#35; Cut Cross Entropy overrides this
liger_fused_linear_cross_entropy: false  &#35; Cut Cross Entropy overrides this
<br>
&#35; ====================
&#35; CHECKPOINTING
&#35; ====================
save_steps: 10
save_total_limit: 10
load_best_model_at_end: true
metric_for_best_model: eval_loss
greater_is_better: false
<br>
&#35; ====================
&#35; LOGGING &amp; OUTPUT
&#35; ====================
output_dir: ./Visage-V2-PT-1-SFT-2-DPO-1
logging_steps: 2
save_safetensors: true
<br>
&#35; ====================
&#35; WANDB TRACKING
&#35; ====================
wandb_project: Visage-V2-DPO
&#35; wandb_entity: your_entity
wandb_name: Visage-V2-PT-1-SFT-2-DPO-1</code></pre>
          </div>
        </details>
      </div>
    </div>
  </div>
</div>
</body>
</html>