# -*- coding: utf-8 -*- import torch from einops import rearrange # S_t = S_t @ (I + alpha_t beta_t^T) + v_t k_t^T # q, k, alpha, beta [B, H, L, D_K] # v [B, H, L, D_V] def dplr_recurrence(q, k, v, alpha, beta, gk, initial_state=None, output_final_state=True): orig_dtype = q.dtype b, h, l, d_k = q.shape q, k, v, beta, gk = map(lambda x: x.float(), [q, k, v, beta, gk]) d_v = v.shape[-1] o = torch.zeros_like(v) S = torch.zeros(b, h, d_k, d_v).to(v) q = q * (d_k ** -0.5) if initial_state is not None: S += initial_state for i in range(l): _k = k[:, :, i] _q = q[:, :, i] _v = v[:, :, i] _alpha = alpha[:, :, i].clone() _beta = beta[:, :, i].clone() _kv = _k[..., None] * _v[..., None, :] + (S.clone() * _alpha[..., None]).sum(-2, keepdim=True) * _beta[..., None] S = S.clone() * gk[:, :, i].exp()[..., None] + _kv o[:, :, i] = torch.einsum('bhd,bhdm->bhm', _q, S) S = None if output_final_state is False else S return o.to(orig_dtype), S def dplr_chunkwise(q, k, v, alpha, beta, gk, initial_state=None, output_final_state=True, chunk_size=32): b, h, l, d_k = q.shape d_v = v.shape[-1] q = q * (d_k ** -0.5) v = v assert l % chunk_size == 0 S = k.new_zeros(b, h, d_k, d_v).to(q) if initial_state is not None: S += initial_state # note that diagonal is masked. mask = torch.triu(torch.ones(chunk_size, chunk_size, dtype=torch.bool, device=q.device), diagonal=0) q, k, v, alpha, beta, gk = map(lambda x: rearrange(x, 'b h (n c) d -> b h n c d', c=chunk_size).float(), [q, k, v, alpha, beta, gk]) gk_cumsum = gk.cumsum(-2) # v2 = (alpha @ k.transpose(-1, -2)).masked_fill_(mask, 0) @ v A_ab = torch.zeros(b, h, l // chunk_size, chunk_size, chunk_size).to(q.device) A_qk = torch.zeros(b, h, l // chunk_size, chunk_size, chunk_size).to(q.device) A_ak = torch.zeros(b, h, l // chunk_size, chunk_size, chunk_size).to(q.device) A_qb = torch.zeros(b, h, l // chunk_size, chunk_size, chunk_size).to(q.device) for i in range(chunk_size): alpha_i = alpha[:, :, :, i, None] q_i = q[:, :, :, i, None] gk_i = gk_cumsum[:, :, :, i, None] mask = (torch.arange(chunk_size) <= i).to(q.device) attn_i = (gk_i - gk_cumsum).masked_fill(~mask.unsqueeze(-1), float('-inf')).exp() A_qk[:, :, :, i, :] = (q_i * k * attn_i).sum(-1).clone() A_qb[:, :, :, i, :] = (q_i * beta * attn_i).sum(-1).clone() mask = (torch.arange(chunk_size) < i).to(q.device) # shift by one. attn_i = (gk_i - gk[:, :, :, i, None] - gk_cumsum).masked_fill(~mask.unsqueeze(-1), float('-inf')).exp() A_ab[:, :, :, i, :] = (alpha_i * beta * attn_i).sum(-1).clone() A_ak[:, :, :, i, :] = (alpha_i * k * attn_i).sum(-1).clone() A_ab = A_ab for i in range(1, chunk_size): A_ab[..., i, :i] = A_ab[..., i, :i].clone() + (A_ab[..., i, :, None].clone() * A_ab[..., :, :i].clone()).sum(-2) A_ab = A_ab + torch.eye(chunk_size, dtype=torch.float, device=q.device) u = A_ab @ (A_ak @ v) w = A_ab @ ((gk_cumsum-gk).exp() * alpha) o = torch.zeros_like(v) mask = torch.triu(torch.ones(chunk_size, chunk_size, dtype=torch.bool, device=q.device), diagonal=1) for i in range(0, l // chunk_size): q_i, k_i, v_i, u_i, w_i, beta_i = q[:, :, i], k[:, :, i], v[:, :, i], u[:, :, i], w[:, :, i], beta[:, :, i] v2_i = u_i + w_i @ S o_1 = A_qk[:, :, i] @ v_i o_2 = A_qb[:, :, i] @ v2_i o_3 = (q_i * gk_cumsum[:, :, i].exp()) @ S o[:, :, i] = o_1 + o_2 + o_3 decay = (gk_cumsum[:, :, i, -1, None] - gk_cumsum[:, :, i]).exp() S = S*gk_cumsum[:, :, i, -1, :, None].exp() + (k_i * decay).transpose(-1, -2) @ v_i + \ (beta_i * decay).transpose(-1, -2) @ v2_i S = None if output_final_state is False else S return rearrange(o, 'b h n c d -> b h (n c) d'), S