# -*- coding: utf-8 -*- # Copyright (c) 2023-2025, Songlin Yang, Yu Zhang import argparse import io import os import tempfile from datetime import timedelta import torch import torch.serialization from torch.distributed.checkpoint.format_utils import dcp_to_torch_save from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer import fla # noqa from torchtitan.tools.logging import init_logger, logger @torch.inference_mode() def save_pretrained( path: str, step: int, config: str, tokenizer: str ): logger.info(f"Loading the config from {config}") config = AutoConfig.from_pretrained(config, trust_remote_code=True) logger.info(f"Saving the config to {path}") config.save_pretrained(path) logger.info(f"Loading the tokenizer from {tokenizer}") tokenizer = AutoTokenizer.from_pretrained(tokenizer, trust_remote_code=True) logger.info(f"Saving the tokenizer to {path}") tokenizer.save_pretrained(path) with tempfile.TemporaryDirectory() as tmpdir: # base_checkpoint_dir = os.path.dirname(path) base_checkpoint_dir = path checkpoint = os.path.join(base_checkpoint_dir, f'checkpoint/step-{step}') checkpoint_path = os.path.join(tmpdir, 'checkpoint.pt') logger.info(f"Saving the distributed checkpoint to {checkpoint_path}") dcp_to_torch_save(checkpoint, checkpoint_path) logger.info(f"Initializing the model from config\n{config}") model = AutoModelForCausalLM.from_config(config) logger.info(model) logger.info("Loading state dict from the checkpoint") # Add datetime.timedelta and io.BytesIO to safe globals torch.serialization.add_safe_globals([timedelta, io.BytesIO]) # torch.load now with default weights_only=True will work model.load_state_dict(torch.load(checkpoint_path, map_location='cpu')['model']) logger.info(f"Saving the model to {path}") model.save_pretrained(path) if __name__ == "__main__": init_logger() parser = argparse.ArgumentParser("Convert DCP format model weights to huggingface-style.") parser.add_argument("--path", type=str, required=True) parser.add_argument("--step", type=int, required=True) parser.add_argument("--config", type=str, required=True) parser.add_argument("--tokenizer", type=str, required=True) args = parser.parse_args() save_pretrained(args.path, args.step, args.config, args.tokenizer)