# -*- coding: utf-8 -*- # Copyright (c) 2023-2025, Songlin Yang, Yu Zhang from typing import Optional, Tuple import torch import triton import triton.language as tl from fla.ops.utils import chunk_global_cumsum, chunk_local_cumsum from fla.ops.utils.op import safe_exp from fla.utils import autocast_custom_bwd, autocast_custom_fwd, check_shared_mem, input_guard, is_intel_alchemist # https://github.com/intel/intel-xpu-backend-for-triton/issues/3449 triton_config = {'grf_mode': 'large'} if is_intel_alchemist else {} @triton.heuristics({ 'NV': lambda args: triton.cdiv(args['V'], args['BV']), 'OUTPUT_ATTENTIONS': lambda args: args['attn'] is not None, 'USE_OFFSETS': lambda args: args['offsets'] is not None, 'USE_G': lambda args: args['g'] is not None }) @triton.autotune( configs=[ triton.Config({}, num_warps=num_warps, num_stages=num_stages) for num_warps in [2, 4, 8, 16] for num_stages in [2, 3, 4] ], key=["BT", "BS", "BK", "BV", "USE_G"], ) @triton.jit def parallel_simple_gla_fwd_kernel( q, k, v, g, o, attn, scale, offsets, indices, T, B: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BS: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, NV: tl.constexpr, OUTPUT_ATTENTIONS: tl.constexpr, HEAD_FIRST: tl.constexpr, USE_OFFSETS: tl.constexpr, USE_G: tl.constexpr ): tl.static_assert(not (USE_OFFSETS and HEAD_FIRST), "USE_OFFSETS and HEAD_FIRST cannot be True at the same time") i_kv, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_k, i_v = i_kv // NV, i_kv % NV i_b, i_h = i_bh // H, i_bh % H o += i_k * B * T * H * V if USE_OFFSETS: i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos else: bos, eos = i_b * T, i_b * T + T q += i_bh * T * K if HEAD_FIRST else (bos * H + i_h) * K k += i_bh * T * K if HEAD_FIRST else (bos * H + i_h) * K v += i_bh * T * V if HEAD_FIRST else (bos * H + i_h) * V o += i_bh * T * V if HEAD_FIRST else (bos * H + i_h) * V if USE_G: g += i_bh * T if HEAD_FIRST else bos * H + i_h if OUTPUT_ATTENTIONS: attn += (bos * H + i_h * T) * T + i_k * B * H * T * T stride_qk = K if HEAD_FIRST else H * K stride_vo = V if HEAD_FIRST else H * V stride_g = 1 if HEAD_FIRST else H p_q = tl.make_block_ptr(q, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) # the Q block is kept in the shared memory throughout the whole kernel # [BT, BK] b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_q.dtype) b_o = tl.zeros([BT, BV], dtype=tl.float32) # [BT] o_q = i_t * BT + tl.arange(0, BT) # [BS] o_k = i_t * BT + tl.arange(0, BS) # Q block and K block have overlap. # masks required if USE_G: p_gq = tl.make_block_ptr(g, (T,), (stride_g,), (i_t * BT,), (BT,), (0,)) # [BT,] b_gq = tl.load(p_gq, boundary_check=(0,)).to(tl.float32) # rescale interchunk output else: b_gq = None for i_s in range(i_t * BT, min((i_t + 1) * BT, T), BS): p_k = tl.make_block_ptr(k, (K, T), (1, stride_qk), (i_k * BK, i_s), (BK, BS), (0, 1)) p_v = tl.make_block_ptr(v, (T, V), (stride_vo, 1), (i_s, i_v * BV), (BS, BV), (1, 0)) # [BK, BS] b_k = tl.load(p_k, boundary_check=(0, 1)) # [BS, BV] b_v = tl.load(p_v, boundary_check=(0, 1)) # [BT, BS] m_s = o_q[:, None] >= o_k[None, :] b_s = tl.dot(b_q, b_k) if USE_G: p_gk = tl.make_block_ptr(g, (T,), (stride_g,), (i_s,), (BS,), (0,)) b_gk = tl.load(p_gk, boundary_check=(0,)) b_s *= safe_exp(b_gq[:, None] - b_gk[None, :]) b_s = tl.where(m_s, b_s, 0) else: b_s = tl.where(m_s, b_s, 0) # [BT, BV] if i_s >= 0: b_o += tl.dot(b_s.to(b_q.dtype), b_v) if OUTPUT_ATTENTIONS: p_a = tl.make_block_ptr(attn, (T, T), (T, 1), (i_t * BT, i_s), (BT, BS), (1, 0)) tl.store(p_a, b_s.to(p_a.dtype.element_ty), boundary_check=(0, 1)) o_k += BS for i_s in range(i_t * BT - BS, -BS, -BS): p_k = tl.make_block_ptr(k, (K, T), (1, stride_qk), (i_k * BK, i_s), (BK, BS), (0, 1)) p_v = tl.make_block_ptr(v, (T, V), (stride_vo, 1), (i_s, i_v * BV), (BS, BV), (1, 0)) # [BK, BS] b_k = tl.load(p_k, boundary_check=(0, 1)) # [BS, BV] b_v = tl.load(p_v, boundary_check=(0, 1)) b_s = tl.dot(b_q, b_k) if USE_G: p_g = tl.make_block_ptr(g, (T,), (stride_g,), (i_s,), (BS,), (0,)) b_g = tl.load(p_g, boundary_check=(0,)) b_gn = tl.load(g + (min(i_s + BS, T) - 1) * stride_g) b_gp = tl.load(g + (i_s-1) * stride_g) if i_s % BT > 0 else 0. # No concrete meaning. Just to avoid some layout bugs. b_s *= safe_exp(b_gq[:, None] + (b_gn - b_g)[None, :]) b_gq += (b_gn - b_gp) if OUTPUT_ATTENTIONS: p_a = tl.make_block_ptr(attn, (T, T), (T, 1), (i_t * BT, i_s), (BT, BS), (1, 0)) tl.store(p_a, b_s.to(p_a.dtype.element_ty), boundary_check=(0, 1)) if i_s >= 0: b_o += tl.dot(b_s.to(b_v.dtype), b_v) p_o = tl.make_block_ptr(o, (T, V), (stride_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1)) @triton.jit(do_not_specialize=['T']) def parallel_simple_gla_bwd_kernel_dq( i_t, i_k, i_v, q, k, v, g, do, dq, dg, stride_qk, stride_vo, stride_g, scale, T, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BS: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_G: tl.constexpr ): p_do = tl.make_block_ptr(do, (T, V), (stride_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) # [BT, BV] b_do = tl.load(p_do, boundary_check=(0, 1)) # [BT, BK] b_dq = tl.zeros([BT, BK], dtype=tl.float32) for i_s in range(0, i_t * BT, BS): p_k = tl.make_block_ptr(k, (T, K), (stride_qk, 1), (i_s, i_k * BK), (BS, BK), (1, 0)) p_v = tl.make_block_ptr(v, (V, T), (1, stride_vo), (i_v * BV, i_s), (BV, BS), (0, 1)) # [BS, BK] b_k = tl.load(p_k, boundary_check=(0, 1)) # [BV, BS] b_v = tl.load(p_v, boundary_check=(0, 1)) # [BT, BV] @ [BV, BS] = [BT, BS] b_ds = tl.dot(b_do, b_v) if USE_G: p_g = tl.make_block_ptr(g, (T,), (stride_g,), (i_s,), (BS,), (0,)) b_g = tl.load(p_g, boundary_check=(0,)) b_gn = tl.load(g + (min(i_s + BS, T) - 1) * stride_g) b_gp = tl.load(g + (i_s - 1) * stride_g) if i_s % BT > 0 else 0. b_ds *= safe_exp(b_gn - b_g)[None, :] if i_s > 0: b_dq *= safe_exp(b_gn - b_gp) # [BT, BS] @ [BS, BK] = [BT, BK] b_dq += tl.dot(b_ds.to(b_v.dtype), b_k) if USE_G: p_gq = tl.make_block_ptr(g, (T,), (stride_g,), (i_t * BT,), (BT,), (0,)) # [BT,] b_gq = tl.load(p_gq, boundary_check=(0,)) # [BT, BK] b_dq *= safe_exp(b_gq)[:, None] # [BT] o_q = i_t * BT + tl.arange(0, BT) # [BS] o_k = i_t * BT + tl.arange(0, BS) # Q block and K block have overlap. masks required for i_s in range(i_t * BT, min((i_t + 1) * BT, T), BS): p_k = tl.make_block_ptr(k, (T, K), (stride_qk, 1), (i_s, i_k * BK), (BS, BK), (1, 0)) p_v = tl.make_block_ptr(v, (V, T), (1, stride_vo), (i_v * BV, i_s), (BV, BS), (0, 1)) # [BS, BK] b_k = tl.load(p_k, boundary_check=(0, 1)) # [BV, BS] b_v = tl.load(p_v, boundary_check=(0, 1)) # [BT, BV] @ [BV, BS] = [BT, BS] b_ds = tl.dot(b_do, b_v) if USE_G: p_gk = tl.make_block_ptr(g, (T,), (stride_g,), (i_s,), (BS,), (0,)) b_gk = tl.load(p_gk, boundary_check=(0,)) b_ds *= safe_exp(b_gq[:, None] - b_gk[None, :]) b_ds = tl.where(o_q[:, None] >= o_k[None, :], b_ds, 0) # [BT, BK] b_dq += tl.dot(b_ds.to(b_k.dtype), b_k) o_k += BS b_dq *= scale p_dq = tl.make_block_ptr(dq, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1)) if USE_G: p_q = tl.make_block_ptr(q, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_dg = tl.sum(b_dq * b_q, 1) p_dg = tl.make_block_ptr(dg, (T,), (stride_g,), (i_t * BT,), (BT,), (0,)) tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0,)) @triton.jit(do_not_specialize=['T']) def parallel_simple_gla_bwd_kernel_dkv( i_t, i_k, i_v, q, k, v, g, do, dk, dv, dg, scale, stride_qk, stride_vo, stride_g, T, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BS: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_G: tl.constexpr ): # [BT, BK] p_k = tl.make_block_ptr(k, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_dk = tl.zeros([BT, BK], dtype=tl.float32) # [BT, BV] p_v = tl.make_block_ptr(v, (T, V), (stride_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_dv = tl.zeros([BT, BV], dtype=tl.float32) if USE_G: p_gk = tl.make_block_ptr(g, (T,), (stride_g,), (i_t * BT,), (BT,), (0,)) b_gk = tl.load(p_gk, boundary_check=(0,)) NTS = tl.cdiv(T, BS) # [BT, BK] for i_s in range(NTS * BS - BS, (i_t + 1) * BT - BS, -BS): p_q = tl.make_block_ptr(q, (T, K), (stride_qk, 1), (i_s, i_k * BK), (BS, BK), (1, 0)) p_do = tl.make_block_ptr(do, (T, V), (stride_vo, 1), (i_s, i_v * BV), (BS, BV), (1, 0)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)) b_ds = tl.dot(b_v, tl.trans(b_do)) b_s = tl.dot(b_k, tl.trans(b_q)) if USE_G: p_gq = tl.make_block_ptr(g, (T,), (stride_g,), (i_s,), (BS,), (0,)) b_gq = tl.load(p_gq, boundary_check=(0,)) b_gp = tl.load(g + (min(i_s + BS, T) - 1) * stride_g) b_gn = tl.load(g + (i_s - 1) * stride_g) if i_s % BT > 0 else 0. if i_s >= 0: tmp = safe_exp(b_gp - b_gn) b_dk *= tmp b_dv *= tmp tmp2 = safe_exp(b_gq - b_gn) b_ds *= tmp2[None, :] b_s *= tmp2[None, :] # [BT, BK] b_dk += tl.dot(b_ds.to(b_q.dtype), b_q) # [BT, BV] b_dv += tl.dot(b_s.to(b_do.dtype), b_do) if USE_G: b_g_last = tl.load(g + (min(i_t * BT + BT, T) - 1) * stride_g) if i_t >= 0: tmp2 = safe_exp(b_g_last - b_gk)[:, None] b_dk *= tmp2 b_dv *= tmp2 o_q = i_t * BT + tl.arange(0, BS) o_k = i_t * BT + tl.arange(0, BT) for i_s in range(i_t * BT, min((i_t + 1) * BT, T), BS): p_q = tl.make_block_ptr(q, (T, K), (stride_qk, 1), (i_s, i_k * BK), (BS, BK), (1, 0)) p_do = tl.make_block_ptr(do, (T, V), (stride_vo, 1), (i_s, i_v * BV), (BS, BV), (1, 0)) # [BS, BK] b_q = tl.load(p_q, boundary_check=(0, 1)) # [BS, BV] b_do = tl.load(p_do, boundary_check=(0, 1)) # [BS] b_ds = tl.dot(b_v, tl.trans(b_do)) b_s = tl.dot(b_k, tl.trans(b_q)) if USE_G: p_gq = tl.make_block_ptr(g, (T,), (stride_g,), (i_s,), (BS,), (0,)) b_gq = tl.load(p_gq, boundary_check=(0,)) if i_s >= 0: tmp = safe_exp(-b_gk[:, None] + b_gq[None, :]) b_ds *= tmp b_s *= tmp m_s = o_k[:, None] <= o_q[None, :] b_s = tl.where(m_s, b_s, 0) b_ds = tl.where(m_s, b_ds, 0) # [BT, BK] b_dk += tl.dot(b_ds.to(b_q.dtype), b_q) b_dv += tl.dot(b_s.to(b_do.dtype), b_do) o_q += BS b_dk *= scale b_dv *= scale p_dk = tl.make_block_ptr(dk, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dv = tl.make_block_ptr(dv, (T, V), (stride_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1)) if USE_G: p_dg = tl.make_block_ptr(dg, (T,), (stride_g,), (i_t * BT,), (BT,), (0,)) b_dg = tl.load(p_dg, boundary_check=(0,)) b_dg -= tl.sum(b_dk * b_k, 1) tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0,)) @triton.heuristics({ 'NV': lambda args: triton.cdiv(args['V'], args['BV']), 'USE_OFFSETS': lambda args: args['offsets'] is not None, 'USE_G': lambda args: args['g'] is not None }) @triton.autotune( configs=[ triton.Config(triton_config, num_warps=num_warps) for num_warps in [2, 4, 8, 16] ], key=['BT', 'BS', 'BK', 'BV', 'USE_G'], ) @triton.jit(do_not_specialize=['T']) def parallel_simple_gla_bwd_kernel( q, k, v, g, do, dq, dk, dv, dg, scale, offsets, indices, T, B: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BS: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, NV: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr, USE_G: tl.constexpr ): tl.static_assert(not (USE_OFFSETS and HEAD_FIRST), "USE_OFFSETS and HEAD_FIRST cannot be True at the same time") i_kv, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_k, i_v = i_kv // NV, i_kv % NV i_b, i_h = i_bh // H, i_bh % H dq += i_v * B * H * T * K dk += i_v * B * H * T * K dv += i_k * B * H * T * V if USE_G: dg += i_kv * B * H * T if USE_OFFSETS: i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos else: bos, eos = i_b * T, i_b * T + T q += (i_bh * T * K) if HEAD_FIRST else (bos * H + i_h) * K k += (i_bh * T * K) if HEAD_FIRST else (bos * H + i_h) * K v += (i_bh * T * V) if HEAD_FIRST else (bos * H + i_h) * V do += (i_bh * T * V) if HEAD_FIRST else (bos * H + i_h) * V dq += (i_bh * T * K) if HEAD_FIRST else (bos * H + i_h) * K dk += (i_bh * T * K) if HEAD_FIRST else (bos * H + i_h) * K dv += (i_bh * T * V) if HEAD_FIRST else (bos * H + i_h) * V if USE_G: g += (i_bh * T) if HEAD_FIRST else (bos * H + i_h) dg += (i_bh * T) if HEAD_FIRST else (bos * H + i_h) stride_qk = K if HEAD_FIRST else H * K stride_vo = V if HEAD_FIRST else H * V stride_g = 1 if HEAD_FIRST else H parallel_simple_gla_bwd_kernel_dq( i_t=i_t, i_k=i_k, i_v=i_v, q=q, k=k, v=v, g=g, do=do, dq=dq, dg=dg, scale=scale, stride_qk=stride_qk, stride_vo=stride_vo, stride_g=stride_g, T=T, K=K, V=V, BT=BT, BS=BS, BK=BK, BV=BV, USE_G=USE_G ) tl.debug_barrier() parallel_simple_gla_bwd_kernel_dkv( i_t=i_t, i_k=i_k, i_v=i_v, q=q, k=k, v=v, g=g, do=do, dk=dk, dv=dv, dg=dg, scale=scale, stride_qk=stride_qk, stride_vo=stride_vo, stride_g=stride_g, T=T, K=K, V=V, BT=BT, BS=BS, BK=BK, BV=BV, USE_G=USE_G ) def parallel_simple_gla_fwd( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, g: torch.Tensor, scale: float, output_attentions: bool = False, chunk_size: int = 128, head_first: bool = True, offsets: Optional[torch.LongTensor] = None, indices: Optional[torch.LongTensor] = None, ): if head_first: B, H, T, K, V = *k.shape, v.shape[-1] else: B, T, H, K, V = *k.shape, v.shape[-1] BT, BS = chunk_size, 32 if check_shared_mem('hopper', k.device.index): BK = min(256, triton.next_power_of_2(K)) BV = min(256, triton.next_power_of_2(V)) elif check_shared_mem('ampere', k.device.index): BK = min(128, triton.next_power_of_2(K)) BV = min(128, triton.next_power_of_2(V)) else: BK = min(64, triton.next_power_of_2(K)) BV = min(64, triton.next_power_of_2(V)) NK = triton.cdiv(K, BK) NV = triton.cdiv(V, BV) assert BT % BS == 0 NT = triton.cdiv(T, BT) if offsets is None else len(indices) # local cumulative decay in log space if g is not None: g = chunk_local_cumsum(g, chunk_size, offsets=offsets, indices=indices, head_first=head_first) grid = (NK * NV, NT, B * H) o = torch.empty(NK, *v.shape, dtype=v.dtype if NK == 1 else torch.float, device=q.device) attn = q.new_zeros(NK, B, H, T, T) if output_attentions else None parallel_simple_gla_fwd_kernel[grid]( q=q, k=k, v=v, g=g, o=o, attn=attn, scale=scale, offsets=offsets, indices=indices, B=B, H=H, T=T, K=K, V=V, BT=BT, BS=BS, BK=BK, BV=BV, HEAD_FIRST=head_first, ) o = o.sum(0) if output_attentions: attn = attn.sum(0) return o, g, attn def parallel_simple_gla_bwd( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, g: torch.Tensor, do: torch.Tensor, scale: float, chunk_size: int = 128, head_first: bool = True, offsets: Optional[torch.LongTensor] = None, indices: Optional[torch.LongTensor] = None, ): if head_first: B, H, T, K, V = *k.shape, v.shape[-1] else: B, T, H, K, V = *k.shape, v.shape[-1] BT, BS = chunk_size, 32 if check_shared_mem('hopper', k.device.index): BK = min(256, triton.next_power_of_2(K)) BV = min(256, triton.next_power_of_2(V)) elif check_shared_mem('ampere', k.device.index): BK = min(128, triton.next_power_of_2(K)) BV = min(128, triton.next_power_of_2(V)) elif check_shared_mem('ada', k.device.index): BK = min(64, triton.next_power_of_2(K)) BV = min(64, triton.next_power_of_2(V)) else: BK = min(32, triton.next_power_of_2(K)) BV = min(32, triton.next_power_of_2(V)) NK = triton.cdiv(K, BK) NV = triton.cdiv(V, BV) assert BT % BS == 0 dq = torch.empty(NV, * q.shape, dtype=q.dtype if NV == 1 else torch.float, device=q.device) dk = torch.empty(NV, * k.shape, dtype=k.dtype if NV == 1 else torch.float, device=q.device) dv = torch.empty(NK, * v.shape, dtype=v.dtype if NK == 1 else torch.float, device=q.device) dg = torch.empty(NK*NV, *g.shape, dtype=torch.float, device=q.device) if g is not None else None NT = triton.cdiv(T, BT) if offsets is None else len(indices) grid = (NK * NV, NT, B * H) parallel_simple_gla_bwd_kernel[grid]( q=q, k=k, v=v, g=g, do=do, dq=dq, dk=dk, dv=dv, dg=dg, offsets=offsets, indices=indices, scale=scale, T=T, B=B, H=H, K=K, V=V, BT=BT, BS=BS, BK=BK, BV=BV, HEAD_FIRST=head_first ) dq = dq.sum(0) dk = dk.sum(0) dv = dv.sum(0) dg = chunk_global_cumsum(dg.sum(0), reverse=True, head_first=head_first, offsets=offsets) if g is not None else None return dq, dk, dv, dg class ParallelSimpleGLAFunction(torch.autograd.Function): @staticmethod @input_guard @autocast_custom_fwd def forward(ctx, q, k, v, g, scale, output_attentions, head_first, offsets): chunk_size = 128 ctx.dtype = q.dtype # 2-d indices denoting the offsets of chunks in each sequence # for example, if the passed `offsets` is [0, 100, 356] and `chunk_size` is 64, # then there are 2 and 4 chunks in the 1st and 2nd sequences respectively, and `indices` will be # [[0, 0], [0, 1], [1, 0], [1, 1], [1, 2], [1, 3]] indices = None if offsets is not None: indices = torch.cat([torch.arange(n) for n in triton.cdiv(offsets[1:] - offsets[:-1], chunk_size).tolist()]) indices = torch.stack([indices.eq(0).cumsum(0) - 1, indices], 1).to(offsets) o, g, attn = parallel_simple_gla_fwd( q=q, k=k, v=v, g=g, scale=scale, output_attentions=output_attentions, head_first=head_first, offsets=offsets, indices=indices, chunk_size=chunk_size) ctx.save_for_backward(q, k, v, g, offsets, indices) ctx.scale = scale ctx.chunk_size = chunk_size ctx.head_first = head_first return o.to(q.dtype), attn @staticmethod @input_guard @autocast_custom_bwd def backward(ctx, do, da=None): q, k, v, g, offsets, indices = ctx.saved_tensors dq, dk, dv, dg = parallel_simple_gla_bwd( q=q, k=k, v=v, g=g, do=do, scale=ctx.scale, chunk_size=ctx.chunk_size, offsets=offsets, indices=indices, head_first=ctx.head_first) return dq.to(q), dk.to(k), dv.to(v), dg.to(ctx.dtype) if dg is not None else None, None, None, None, None def parallel_simple_gla( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, g: Optional[torch.Tensor] = None, scale: Optional[float] = None, output_attentions: bool = False, cu_seqlens: Optional[torch.LongTensor] = None, head_first: bool = True ) -> Tuple[torch.Tensor, torch.Tensor]: r""" Args: q (torch.Tensor): queries of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]` k (torch.Tensor): keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]` v (torch.Tensor): values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]` g (torch.Tensor): Forget gates of shape `[B, H, T]` if `head_first=True` else `[B, T, H]`. Compared to GLA, the gating is head-wise instead of elementwise. scale (Optional[int]): Scale factor for attention scores. If not provided, it will default to `1 / sqrt(K)`. Default: `None`. output_attentions (bool): Whether to output the materialized attention scores of shape [B, H, T, T]. Default: `False`. head_first (Optional[bool]): Whether the inputs are in the head-first format. Default: `True`. cu_seqlens (torch.LongTensor): Cumulative sequence lengths of shape `[N+1]` used for variable-length training, consistent with the FlashAttention API. Returns: o (torch.Tensor): Outputs of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`. attn (torch.Tensor): Attention scores of shape `[B, H, T, T]` if `output_attentions=True` else `None` """ if scale is None: scale = k.shape[-1] ** -0.5 if cu_seqlens is not None: assert q.shape[0] == 1, "batch size must be 1 when cu_seqlens are provided" assert not head_first, "head_first must be False when cu_seqlens are provided" if g is not None: g = g.float() if output_attentions: assert cu_seqlens is None, "output_attentions=True is not supported with variable-length sequences" o, attn = ParallelSimpleGLAFunction.apply(q, k, v, g, scale, output_attentions, head_first, cu_seqlens) return o, attn