# -*- coding: utf-8 -*- # Copyright (c) 2024-2025, Songlin Yang, Yu Zhang from typing import Optional import torch from fla.ops.generalized_delta_rule import fused_recurrent_dplr_delta_rule def fused_recurrent_rwkv7( r: torch.Tensor, w: torch.Tensor, k: torch.Tensor, v: torch.Tensor, a: torch.Tensor, b: torch.Tensor, scale: float = 1.0, initial_state: torch.Tensor = None, output_final_state: bool = True, cu_seqlens: Optional[torch.LongTensor] = None, head_first: bool = False ): """ Args: r (torch.Tensor): r of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`. w (torch.Tensor): log decay of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`. k (torch.Tensor): k of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`. v (torch.Tensor): v of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`. a (torch.Tensor): a of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`. b (torch.Tensor): b of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`. scale (float): scale of the attention. initial_state (torch.Tensor): initial state of shape `[B, H, K, V]` if cu_seqlens is None else `[N, H, K, V]` where N = len(cu_seqlens) - 1. output_final_state (bool): whether to output the final state. cu_seqlens (torch.LongTensor): Cumulative sequence lengths of shape `[N+1]` used for variable-length training, consistent with the FlashAttention API. head_first (bool): whether to use head first. Recommended to be False to avoid extra transposes. """ return fused_recurrent_dplr_delta_rule( q=r, k=k, v=v, a=a, b=b, gk=w, scale=scale, initial_state=initial_state, output_final_state=output_final_state, cu_seqlens=cu_seqlens, head_first=head_first )