# -*- coding: utf-8 -*- # Copyright (c) 2023-2025, Songlin Yang, Yu Zhang from typing import Optional, Tuple import torch import triton import triton.language as tl from fla.ops.utils.op import exp from fla.utils import autocast_custom_bwd, autocast_custom_fwd, input_guard @triton.heuristics({ 'USE_INITIAL_STATE': lambda args: args['h0'] is not None, 'STORE_FINAL_STATE': lambda args: args['ht'] is not None, 'USE_OFFSETS': lambda args: args['offsets'] is not None }) @triton.autotune( configs=[ triton.Config({}, num_warps=num_warps) for num_warps in [1, 2, 4, 8, 16] ], key=['BK', 'BV'] ) @triton.jit(do_not_specialize=['T']) def fused_recurrent_rwkv6_fwd_kernel( q, # query [B, H, T, K]/[B, T, H, K] k, # key [B, H, T, K]/[B, T, H, K] v, # value [B, H, T, V]/[B, T, H, V] w, # log gate [B, H, T]/[B, T, H] or None u, # bonus [B, H, K] o, # output [NK, B, H, T, V]/[NK, B, T, H, V] h0, # initial hidden state [B, H, K, V] ht, # final hidden state [B, H, K, V] offsets, scale, T, B: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, REVERSE: tl.constexpr, # whether to reverse the recurrence USE_INITIAL_STATE: tl.constexpr, # whether to use initial state STORE_FINAL_STATE: tl.constexpr, # whether to store final state USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr ): i_v, i_k, i_nh = tl.program_id(0).to(tl.int64), tl.program_id(1).to(tl.int64), tl.program_id(2).to(tl.int64) i_n, i_h = i_nh // H, i_nh % H if USE_OFFSETS: bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64) all = T T = eos - bos else: bos, eos = i_n * T, i_n * T + T all = B * T o_k = i_k * BK + tl.arange(0, BK) o_v = i_v * BV + tl.arange(0, BV) if HEAD_FIRST: p_q = q + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k p_k = k + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k p_v = v + i_nh * T*V + ((T-1) * V if REVERSE else 0) + o_v p_w = w + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k p_o = o + (i_k * B*H + i_nh) * T*V + ((T-1) * V if REVERSE else 0) + o_v else: p_q = q + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k p_k = k + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k p_v = v + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + o_v p_w = w + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k p_o = o + ((i_k * all + bos) + ((T-1) if REVERSE else 0)) * H*V + i_h * V + o_v p_u = u + i_h * K + o_k mask_k = o_k < K mask_v = o_v < V mask_h = mask_k[:, None] & mask_v[None, :] b_u = tl.load(p_u, mask=mask_k, other=0).to(tl.float32) b_h = tl.zeros([BK, BV], dtype=tl.float32) if USE_INITIAL_STATE: p_h0 = h0 + i_nh * K*V + o_k[:, None] * V + o_v[None, :] b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32) for _ in range(0, T): b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32) * scale b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32) b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32) b_w = tl.load(p_w, mask=mask_k, other=0).to(tl.float32) b_kv = b_k[:, None] * b_v[None, :] b_o = tl.sum((b_h + b_kv * b_u[:, None]) * b_q[:, None], 0) b_h = b_h * exp(b_w)[:, None] + b_kv tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_v) p_q += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K p_k += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K p_v += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V p_w += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K p_o += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V if STORE_FINAL_STATE: p_ht = ht + i_nh * K*V + o_k[:, None] * V + o_v[None, :] tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask_h) @triton.heuristics({ 'USE_INITIAL_STATE': lambda args: args['h0'] is not None, 'USE_OFFSETS': lambda args: args['offsets'] is not None }) @triton.autotune( configs=[ triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), ], key=['BK', 'BV'] ) @triton.jit(do_not_specialize=['T']) def fused_recurrent_rwkv6_bwd_kernel_dq( k, # key [B, H, T, V]/[B, T, H, V] v, # value [B, H, T, V]/[B, T, H, V] w, # log gate [B, H, T]/[B, T, H] u, # bonus [B, H, K] do, # gradient of output [B, H, T, V]/[B, T, H, V] dq, # gradient of query [NV, B, H, T, K]/[NV, B, T, H, K] dq1, # gradient of query_aux [NV, B, H, T, K]/[NV, B, T, H, K] h0, offsets, scale, T, B: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, REVERSE: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr ): i_v, i_k, i_nh = tl.program_id(0).to(tl.int64), tl.program_id(1).to(tl.int64), tl.program_id(2).to(tl.int64) i_n, i_h = i_nh // H, i_nh % H if USE_OFFSETS: bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64) all = T T = eos - bos else: bos, eos = i_n * T, i_n * T + T all = B * T o_k = i_k * BK + tl.arange(0, BK) o_v = i_v * BV + tl.arange(0, BV) if HEAD_FIRST: p_k = k + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k p_v = v + i_nh * T*V + ((T-1) * V if REVERSE else 0) + o_v p_w = w + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k p_do = do + i_nh * T*V + ((T-1) * V if REVERSE else 0) + o_v p_dq = dq + (i_v * B*H + i_nh) * T*K + ((T-1) * K if REVERSE else 0) + o_k p_dq1 = dq1 + (i_v * B*H + i_nh) * T*K + ((T-1) * K if REVERSE else 0) + o_k else: p_k = k + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k p_v = v + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + o_v p_w = w + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k p_do = do + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + o_v p_dq = dq + ((i_v * all + bos) + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k p_dq1 = dq1 + ((i_v * all + bos) + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k p_u = u + i_h * K + o_k mask_k = o_k < K mask_v = o_v < V mask_h = mask_k[:, None] & mask_v[None, :] b_u = tl.load(p_u, mask=mask_k, other=0).to(tl.float32) b_h = tl.zeros([BK, BV], dtype=tl.float32) if USE_INITIAL_STATE: p_h0 = h0 + i_nh * K*V + o_k[:, None] * V + o_v[None, :] b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32) for _ in range(0, T): b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32) b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32) b_w = tl.load(p_w, mask=mask_k, other=0).to(tl.float32) b_do = tl.load(p_do, mask=mask_v, other=0).to(tl.float32) b_kv = b_k[:, None] * b_v[None, :] b_hq = b_h * b_do[None, :] b_dq = tl.sum(b_hq + b_kv * b_u[:, None] * b_do[None, :], 1) * scale b_dq1 = tl.sum(b_hq, 1) b_h = b_h * exp(b_w)[:, None] b_h += b_kv tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), mask=mask_k) tl.store(p_dq1, b_dq1.to(p_dq1.dtype.element_ty), mask=mask_k) p_k += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K p_v += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V p_w += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K p_do += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V p_dq += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K p_dq1 += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K @triton.heuristics({ 'USE_INITIAL_STATE': lambda args: args['dh0'] is not None, 'USE_OFFSETS': lambda args: args['offsets'] is not None }) @triton.autotune( configs=[ triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), ], key=['BK', 'BV'] ) @triton.jit(do_not_specialize=['T']) def fused_recurrent_rwkv6_bwd_kernel_dkv( q, # query [B, H, T, K]/[B, T, H, K] k, # key [B, H, T, V]/[B, T, H, V] v, # value [B, H, T, V]/[B, T, H, V] w, # log gate [B, H, T]/[B, T, H] u, # bonus [B, H, K] do, # gradient of output [B, H, T, V]/[B, T, H, V] dk, # gradient of key [NV, B, H, T, K]/[NK, B, T, H, K] dk1, # gradient of key_aux [NV, B, H, T, K]/[NK, B, T, H, K] dv, # gradient of value [NK, B, H, T, V]/[NV, B, T, H, V] dh0, # gradient of initial hidden state [N, H, K, V] offsets, scale, T, B: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, REVERSE: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr, ): i_v, i_k, i_nh = tl.program_id(0).to(tl.int64), tl.program_id(1).to(tl.int64), tl.program_id(2).to(tl.int64) i_n, i_h = i_nh // H, i_nh % H if USE_OFFSETS: bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64) all = T T = eos - bos else: bos, eos = i_n * T, i_n * T + T all = B * T o_k = i_k * BK + tl.arange(0, BK) o_v = i_v * BV + tl.arange(0, BV) if HEAD_FIRST: p_q = q + i_nh * T*K + ((T-1) * K if not REVERSE else 0) + o_k p_k = k + i_nh * T*K + ((T-1) * K if not REVERSE else 0) + o_k p_v = v + i_nh * T*V + ((T-1) * V if not REVERSE else 0) + o_v p_w = w + i_nh * T*K + ((T-1) * K if not REVERSE else 0) + o_k p_do = do + i_nh * T*V + ((T-1) * V if not REVERSE else 0) + o_v p_dk = dk + (i_v * B*H + i_nh) * T*K + ((T-1) * K if not REVERSE else 0) + o_k p_dk1 = dk1 + (i_v * B*H + i_nh) * T*K + ((T-1) * K if not REVERSE else 0) + o_k p_dv = dv + (i_k * B*H + i_nh) * T*V + ((T-1) * V if not REVERSE else 0) + o_v else: p_q = q + (bos + ((T-1) if not REVERSE else 0)) * H*K + i_h * K + o_k p_k = k + (bos + ((T-1) if not REVERSE else 0)) * H*K + i_h * K + o_k p_v = v + (bos + ((T-1) if not REVERSE else 0)) * H*V + i_h * V + o_v p_w = w + (bos + ((T-1) if not REVERSE else 0)) * H*K + i_h * K + o_k p_do = do + (bos + ((T-1) if not REVERSE else 0)) * H*V + i_h * V + o_v p_dk = dk + ((i_v * all + bos) + ((T-1) if not REVERSE else 0)) * H*K + i_h * K + o_k p_dk1 = dk1 + ((i_v * all + bos) + ((T-1) if not REVERSE else 0)) * H*K + i_h * K + o_k p_dv = dv + ((i_k * all + bos) + ((T-1) if not REVERSE else 0)) * H*V + i_h * V + o_v p_u = u + i_h * K + o_k mask_k = o_k < K mask_v = o_v < V mask_h = mask_k[:, None] & mask_v[None, :] b_u = tl.load(p_u, mask=mask_k, other=0).to(tl.float32) b_dh = tl.zeros([BK, BV], dtype=tl.float32) for _ in range(T - 1, -1, -1): b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32) * scale b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32) b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32) b_w = tl.load(p_w, mask=mask_k, other=0).to(tl.float32) b_do = tl.load(p_do, mask=mask_v, other=0).to(tl.float32) b_dkv = b_q[:, None] * b_do[None, :] b_dk = tl.sum(b_dh * b_v[None, :], 1) tl.store(p_dk1, b_dk.to(p_dk1.dtype.element_ty), mask=mask_k) b_dk += tl.sum(b_dkv * b_u[:, None] * b_v[None, :], 1) b_dv = tl.sum((b_dh + (b_dkv * b_u[:, None])) * b_k[:, None], 0) tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), mask=mask_k) tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), mask=mask_v) b_dh *= exp(b_w)[:, None] b_dh += b_dkv p_q += (-1 if not REVERSE else 1) * (1 if HEAD_FIRST else H) * K p_k += (-1 if not REVERSE else 1) * (1 if HEAD_FIRST else H) * K p_v += (-1 if not REVERSE else 1) * (1 if HEAD_FIRST else H) * V p_w += (-1 if not REVERSE else 1) * (1 if HEAD_FIRST else H) * K p_do += (-1 if not REVERSE else 1) * (1 if HEAD_FIRST else H) * V p_dk += (-1 if not REVERSE else 1) * (1 if HEAD_FIRST else H) * K p_dk1 += (-1 if not REVERSE else 1) * (1 if HEAD_FIRST else H) * K p_dv += (-1 if not REVERSE else 1) * (1 if HEAD_FIRST else H) * V if USE_INITIAL_STATE: p_dh0 = dh0 + i_nh * K*V + o_k[:, None] * V + o_v[None, :] tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), mask=mask_h) @triton.heuristics({ 'USE_OFFSETS': lambda args: args['offsets'] is not None }) @triton.autotune( configs=[ triton.Config({'BT': BT, 'BK': BK}, num_warps=num_warps) for BT in [16, 32, 64] for BK in [32, 64] for num_warps in [1, 2, 4, 8] ], key=['K'] ) @triton.jit(do_not_specialize=['T']) def fused_recurrent_rwkv6_bwd_kernel_dw( q, k, dq, dk, dw, offsets, scale, T, H: tl.constexpr, K: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, REVERSE: tl.constexpr, HEAD_FIRST: tl.constexpr, USE_OFFSETS: tl.constexpr ): i_k, i_nh = tl.program_id(0), tl.program_id(1) i_n, i_h = i_nh // H, i_nh % H if USE_OFFSETS: bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) else: bos, eos = i_n * T, i_n * T + T T = eos - bos NT = tl.cdiv(T, BT) o_i = tl.arange(0, BT) m_i = tl.where(o_i[:, None] >= o_i[None, :], 1., 0.) if not REVERSE else tl.where(o_i[:, None] <= o_i[None, :], 1., 0.) b_z = tl.zeros([BK], dtype=tl.float32) i_t = 0 if not REVERSE else NT - 1 for _ in range(NT): if HEAD_FIRST: p_q = tl.make_block_ptr(q + i_nh * T*K, (T, K), (K, 1), (i_t * BT + 1, i_k * BK), (BT, BK), (1, 0)) p_dq = tl.make_block_ptr(dq + i_nh * T*K, (T, K), (K, 1), (i_t * BT + 1, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + i_nh * T*K, (T-1, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dk = tl.make_block_ptr(dk + i_nh * T*K, (T-1, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dw = tl.make_block_ptr(dw + i_nh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) else: p_q = tl.make_block_ptr(q + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + 1, i_k * BK), (BT, BK), (1, 0)) p_dq = tl.make_block_ptr(dq + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + 1, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + (bos*H + i_h) * K, (T-1, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dk = tl.make_block_ptr(dk + (bos*H + i_h) * K, (T-1, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dw = tl.make_block_ptr(dw + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) # [BT, BK] b_q = tl.load(p_q, boundary_check=(0, 1)).to(tl.float32) b_dq = tl.load(p_dq, boundary_check=(0, 1)).to(tl.float32) b_k = tl.load(p_k, boundary_check=(0, 1)).to(tl.float32) b_dk = tl.load(p_dk, boundary_check=(0, 1)).to(tl.float32) b_dw = (b_q * b_dq * scale) - b_k * b_dk b_c = b_z[None, :] + tl.dot(m_i, b_dw, allow_tf32=False) tl.store(p_dw, b_c.to(p_dw.dtype.element_ty), boundary_check=(0, 1)) if i_t >= 0: b_z += tl.sum(b_dw, 0) i_t += (1 if not REVERSE else -1) def fused_recurrent_rwkv6_fwd( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, w: torch.Tensor, u: torch.Tensor, scale: Optional[float] = None, initial_state: Optional[torch.Tensor] = None, output_final_state: bool = False, reverse: bool = False, offsets: Optional[torch.LongTensor] = None, head_first: bool = True ): if head_first: B, H, T, K, V = *k.shape, v.shape[-1] else: B, T, H, K, V = *k.shape, v.shape[-1] N = B if offsets is None else len(offsets) - 1 BK, BV = min(triton.next_power_of_2(K), 32), min(triton.next_power_of_2(V), 32) NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV) h0 = initial_state ht = q.new_empty(N, H, K, V, dtype=torch.float) if output_final_state else None o = q.new_empty(NK, *v.shape, dtype=torch.float) grid = (NV, NK, N * H) fused_recurrent_rwkv6_fwd_kernel[grid]( q, k, v, w, u, o, h0, ht, offsets, scale, T=T, B=B, H=H, K=K, V=V, BK=BK, BV=BV, REVERSE=reverse, HEAD_FIRST=head_first ) o = o.sum(0) return o, ht def fused_recurrent_rwkv6_bwd( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, w: torch.Tensor, u: torch.Tensor, do: torch.Tensor, scale: Optional[float] = None, initial_state: Optional[torch.Tensor] = None, reverse: bool = False, offsets: Optional[torch.LongTensor] = None, head_first: bool = True ): if head_first: B, H, T, K, V = *k.shape, v.shape[-1] else: B, T, H, K, V = *k.shape, v.shape[-1] N = B if offsets is None else len(offsets) - 1 BK, BV = min(triton.next_power_of_2(K), 16), min(triton.next_power_of_2(V), 64) NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV) dq = q.new_empty(NV, *q.shape, dtype=torch.float) dq1 = torch.empty_like(dq) grid = (NV, NK, N * H) fused_recurrent_rwkv6_bwd_kernel_dq[grid]( k, v, w, u, do, dq, dq1, initial_state, offsets, scale, T=T, B=B, H=H, K=K, V=V, BK=BK, BV=BV, REVERSE=reverse, HEAD_FIRST=head_first ) dq = dq.sum(0) dq1 = dq1.sum(0) BK, BV = min(triton.next_power_of_2(K), 32), min(triton.next_power_of_2(V), 32) NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV) dk = q.new_empty(NV, *k.shape, dtype=torch.float) dk1 = q.new_empty(NV, *k.shape, dtype=torch.float) dv = q.new_empty(NK, *v.shape, dtype=torch.float) dh0 = torch.empty_like(initial_state) if initial_state is not None else None grid = (NV, NK, N * H) fused_recurrent_rwkv6_bwd_kernel_dkv[grid]( q, k, v, w, u, do, dk, dk1, dv, dh0, offsets, scale, T=T, B=B, H=H, K=K, V=V, BK=BK, BV=BV, REVERSE=reverse, HEAD_FIRST=head_first ) dk = dk.sum(0) dk1 = dk1.sum(0) dv = dv.sum(0) dw = torch.empty_like(w) def grid(meta): return (triton.cdiv(meta['K'], meta['BK']), N * H) fused_recurrent_rwkv6_bwd_kernel_dw[grid]( q, k, dq1, dk1, dw, offsets, scale, T=T, H=H, K=K, REVERSE=not reverse, HEAD_FIRST=head_first ) du = (do.float() * v).sum(-1, True, dtype=torch.float) * q * k * scale du = du.sum((0, 2)) if head_first else du.sum((0, 1)) return dq, dk, dv, dw, du, dh0 class FusedRecurrentRWKV6Function(torch.autograd.Function): @staticmethod @input_guard @autocast_custom_fwd def forward( ctx, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, w: torch.Tensor, u: torch.Tensor, scale: Optional[float] = None, initial_state: Optional[torch.Tensor] = None, output_final_state: bool = False, reverse: bool = False, offsets: Optional[torch.LongTensor] = None, head_first: bool = True ): o, ht = fused_recurrent_rwkv6_fwd( q=q, k=k, v=v, w=w, u=u, scale=scale, initial_state=initial_state, output_final_state=output_final_state, reverse=reverse, offsets=offsets, head_first=head_first ) ctx.save_for_backward(q, k, v, w, u, initial_state) ctx.scale = scale ctx.reverse = reverse ctx.offsets = offsets ctx.head_first = head_first return o.to(v), ht @staticmethod @input_guard @autocast_custom_bwd def backward(ctx, do, dht): q, k, v, w, u, initial_state = ctx.saved_tensors dq, dk, dv, dw, du, dh0 = fused_recurrent_rwkv6_bwd( q=q, k=k, v=v, w=w, u=u, do=do, scale=ctx.scale, initial_state=initial_state, reverse=ctx.reverse, offsets=ctx.offsets, head_first=ctx.head_first ) dh0 = dh0.to(initial_state) if dh0 is not None else dh0 return dq.to(q), dk.to(k), dv.to(v), dw.to(w), du.to(u), None, dh0, None, None, None, None def fused_recurrent_rwkv6( r: torch.Tensor, k: torch.Tensor, v: torch.Tensor, w: torch.Tensor, u: torch.Tensor, scale: Optional[int] = None, initial_state: Optional[torch.Tensor] = None, output_final_state: bool = False, reverse: bool = False, cu_seqlens: Optional[torch.LongTensor] = None, head_first: bool = True ) -> Tuple[torch.Tensor, torch.Tensor]: r""" Args: r (torch.Tensor): reception of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`. Alias: q, query in linear attention. k (torch.Tensor): keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`. v (torch.Tensor): values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`. w (torch.Tensor): data-dependent decays of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]` in log space! Alias: g. u (torch.Tensor): bonus of shape `[H, K]` scale (Optional[int]): Scale factor for the attention scores. If not provided, it will default to `1 / sqrt(K)`. Default: `None`. initial_state (Optional[torch.Tensor]): Initial state of shape `[N, H, K, V]` for `N` input sequences. For equal-length input sequences, `N` equals the batch size `B`. Default: `None`. output_final_state (Optional[bool]): Whether to output the final state of shape `[N, H, K, V]`. Default: `False`. reverse (Optional[bool]): If `True`, process the state passing in reverse order. Default: `False`. cu_seqlens (torch.LongTensor): Cumulative sequence lengths of shape `[N+1]` used for variable-length training, consistent with the FlashAttention API. head_first (Optional[bool]): Whether the inputs are in the head-first format, which is not supported for variable-length inputs. Default: `True`. Returns: o (torch.Tensor): Outputs of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`. final_state (Optional[torch.Tensor]): Final state of shape `[N, H, K, V]` if `output_final_state=True` else `None`. Examples:: >>> import torch >>> import torch.nn.functional as F >>> from einops import rearrange >>> from fla.ops.rwkv6 import fused_recurrent_rwkv6 # inputs with equal lengths >>> B, T, H, K, V = 4, 2048, 4, 512, 512 >>> q = torch.randn(B, T, H, K, device='cuda') >>> k = torch.randn(B, T, H, K, device='cuda') >>> v = torch.randn(B, T, H, V, device='cuda') >>> g = F.logsigmoid(torch.randn(B, T, H, K, device='cuda')) >>> u = torch.randn(H, K, device='cuda') >>> h0 = torch.randn(B, H, K, V, device='cuda') >>> o, ht = fused_recurrent_rwkv6(q, k, v, g, u, initial_state=h0, output_final_state=True, head_first=False) # for variable-length inputs, the batch size `B` is expected to be 1 and `cu_seqlens` is required >>> q, k, v, g = map(lambda x: rearrange(x, 'b t h d -> 1 (b t) h d'), (q, k, v, g)) # for a batch with 4 sequences, `cu_seqlens` with 5 start/end positions are expected >>> cu_seqlens = q.new_tensor([0, 2048, 4096, 6144, 8192], dtype=torch.long) >>> o_var, ht_var = fused_recurrent_rwkv6(q, k, v, g, u, initial_state=h0, output_final_state=True, cu_seqlens=cu_seqlens, head_first=False) >>> assert o.allclose(o_var.view(o.shape)) >>> assert ht.allclose(ht_var) """ if cu_seqlens is not None: if r.shape[0] != 1: raise ValueError(f"The batch size is expected to be 1 rather than {r.shape[0]} when using `cu_seqlens`." f"Please flatten variable-length inputs before processing.") if head_first: raise RuntimeError("Sequences with variable lengths are not supported for head-first mode") if initial_state is not None and initial_state.shape[0] != len(cu_seqlens) - 1: raise ValueError(f"The number of initial states is expected to be equal to the number of input sequences, " f"i.e., {len(cu_seqlens) - 1} rather than {initial_state.shape[0]}.") if scale is None: scale = k.shape[-1] ** -0.5 o, final_state = FusedRecurrentRWKV6Function.apply( r, k, v, w, u, scale, initial_state, output_final_state, reverse, cu_seqlens, head_first ) return o, final_state