# -*- coding: utf-8 -*- # Copyright (c) 2023-2025, Songlin Yang, Yu Zhang from typing import Optional, Tuple import torch from fla.ops.simple_gla.parallel import parallel_simple_gla def parallel_retention( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, scale: Optional[float] = None, output_attentions: bool = False, cu_seqlens: Optional[torch.LongTensor] = None, head_first: bool = True ) -> Tuple[torch.Tensor, torch.Tensor]: r""" Args: q (torch.Tensor): queries of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]` k (torch.Tensor): keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]` v (torch.Tensor): values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]` scale (Optional[int]): Scale factor for attention scores. If not provided, it will default to `1 / sqrt(K)`. Default: `None`. output_attentions (bool): Whether to output the materialized attention scores of shape [B, H, T, T]. Default: `False`. cu_seqlens (torch.LongTensor): Cumulative sequence lengths of shape `[N+1]` used for variable-length training, consistent with the FlashAttention API. head_first (Optional[bool]): Whether the inputs are in the head-first format. Default: `True`. Returns: o (torch.Tensor): Outputs of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`. attn (torch.Tensor): Attention scores of shape `[B, H, T, T]` if `output_attentions=True` else `None` """ if head_first: n_heads = q.shape[1] else: n_heads = q.shape[2] s = (1 - q.new_tensor(2., dtype=torch.float).pow(-5. - q.new_tensor(range(n_heads), dtype=torch.float))).log() if head_first: g = s[None, :, None].expand(q.shape[0], q.shape[1], q.shape[2]).contiguous() else: g = s[None, None, :].expand(q.shape[0], q.shape[1], q.shape[2]).contiguous() return parallel_simple_gla( q=q, k=k, v=v, scale=scale, g=g, output_attentions=output_attentions, head_first=head_first, cu_seqlens=cu_seqlens )