# -*- coding: utf-8 -*- # Copyright (c) 2023-2025, Songlin Yang, Yu Zhang from typing import Optional, Tuple import torch import triton import triton.language as tl from packaging import version from fla.utils import autocast_custom_bwd, autocast_custom_fwd, input_guard @triton.jit(do_not_specialize=['T']) def fused_chunk_retention_fwd_kernel( q, k, v, o, h0, ht, scale, T, B: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, STORE_FINAL_STATE: tl.constexpr, CHECK: tl.constexpr ): # indices i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h = i_bh % H o_i = tl.arange(0, BT) # decay rate given the head index b_b = tl.math.log2(1 - tl.math.exp2(-5 - i_h * 1.0)) # d_b: overall decay for the entire chunk # d_o: cumulative decay from the start of the chunk # d_h: cumulative decay from the end of the chunk d_b, d_o, d_h = tl.math.exp2(BT * b_b), tl.math.exp2((o_i + 1) * b_b), tl.math.exp2((BT - o_i - 1) * b_b) # [BT, BT] m_s = o_i[:, None] >= o_i[None, :] d_s = tl.where(m_s, tl.math.exp2((o_i[:, None] - o_i[None, :]) * b_b), 0) # [BK, BV] b_h = tl.zeros([BK, BV], dtype=tl.float32) # make block pointers p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (0, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + i_bh * T*K, (K, T), (1, K), (i_k * BK, 0), (BK, BT), (0, 1)) p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (0, i_v * BV), (BT, BV), (1, 0)) p_o = tl.make_block_ptr(o + (i_k*B*H+i_bh).to(tl.int64) * T*V, (T, V), (V, 1), (0, i_v * BV), (BT, BV), (1, 0)) if USE_INITIAL_STATE: p_h = tl.make_block_ptr(h0 + i_bh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_h = tl.load(p_h, boundary_check=(0, 1)).to(tl.float32) NT = tl.cdiv(T, BT) for i in range(0, NT): # [BT, BK] b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_q.dtype) # [BK, BT] b_k = tl.load(p_k, boundary_check=(0, 1)) # [BT, BV] b_v = tl.load(p_v, boundary_check=(0, 1)) # [BT, BT] b_s = tl.dot(b_q, b_k, allow_tf32=False) * d_s # [BT, BV] b_o = tl.dot(b_s.to(b_q.dtype), b_v, allow_tf32=False) if CHECK and i == 0: b_o += tl.dot(b_q, b_h.to(b_q.dtype), allow_tf32=False) * d_o[:, None] b_h = d_b * b_h + tl.dot(b_k, (b_v * d_h[:, None]).to(b_k.dtype), allow_tf32=False) else: b_o += tl.dot(b_q, b_h.to(b_q.dtype), allow_tf32=False) * d_o[:, None] if i == NT - 1 and (T % BT) != 0: d_b = tl.math.exp2((T % BT) * b_b) d_h = tl.math.exp2(((T % BT) - o_i - 1) * b_b) b_h = d_b * b_h + tl.dot(b_k, (b_v * d_h[:, None]).to(b_k.dtype), allow_tf32=False) tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1)) p_q = tl.advance(p_q, (BT, 0)) p_k = tl.advance(p_k, (0, BT)) p_v = tl.advance(p_v, (BT, 0)) p_o = tl.advance(p_o, (BT, 0)) if STORE_FINAL_STATE: p_ht = tl.make_block_ptr(ht + i_bh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1)) @triton.jit(do_not_specialize=['T']) def fused_chunk_retention_bwd_kernel( q, k, v, do, dq, dk, dv, h0, scale, T, B: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, CHECK: tl.constexpr ): i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h = i_bh % H o_i = tl.arange(0, BT) b_b = tl.math.log2(1 - tl.math.exp2(-5 - i_h * 1.0)) d_q, d_k = tl.math.exp2((o_i+1) * b_b) * scale, tl.math.exp2((BT - o_i - 1) * b_b) d_b = tl.math.exp2(BT * b_b) m_s = o_i[:, None] >= o_i[None, :] d_s = tl.where(m_s, tl.math.exp2((o_i[:, None] - o_i[None, :]) * b_b), 0) * scale # [BV, BK] b_h = tl.zeros([BV, BK], dtype=tl.float32) if USE_INITIAL_STATE: p_h = tl.make_block_ptr(h0 + i_bh * K * V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) b_h = tl.load(p_h, boundary_check=(0, 1)).to(tl.float32) for i in range(0, tl.cdiv(T, BT)): p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i * BT, i_k * BK), (BT, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * T*V, (V, T), (1, V), (i_v * BV, i * BT), (BV, BT), (0, 1)) p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i * BT, i_v * BV), (BT, BV), (1, 0)) p_dq = tl.make_block_ptr(dq + (i_bh + i_v*B*H).to(tl.int64) * T*K, (T, K), (K, 1), (i*BT, i_k*BK), (BT, BK), (1, 0)) # [BT, K] b_k = tl.load(p_k, boundary_check=(0, 1)) # [V, BT] b_v = tl.load(p_v, boundary_check=(0, 1)) # [BT, V] b_do = tl.load(p_do, boundary_check=(0, 1)) b_dd = (b_do * d_q[:, None]).to(b_do.dtype) # [BT, BT] b_ds = tl.dot(b_do, b_v, allow_tf32=False) b_ds = (b_ds * d_s).to(b_k.dtype) # [BT, K] b_dq = tl.dot(b_ds, b_k, allow_tf32=False) # [V, K] if CHECK and i == 0: b_dq += tl.dot(b_dd, b_h.to(b_k.dtype), allow_tf32=False) b_h = d_b * b_h + tl.dot((b_v * d_k[None, :]).to(b_k.dtype), b_k, allow_tf32=False) else: b_dq += tl.dot(b_dd, b_h.to(b_k.dtype), allow_tf32=False) b_h = d_b * b_h + tl.dot((b_v * d_k[None, :]).to(b_k.dtype), b_k, allow_tf32=False) tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1)) # sync threads b_h = None tl.debug_barrier() d_s = tl.trans(d_s) # [BK, BV] b_dh = tl.zeros([BK, BV], dtype=tl.float32) for i in range(1, tl.cdiv(T, BT) + 1): p_q = tl.make_block_ptr(q + i_bh * T*K, (K, T), (1, K), (i_k * BK, T - i * BT), (BK, BT), (0, 1)) p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (T - i * BT, i_k * BK), (BT, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (T - i * BT, i_v * BV), (BT, BV), (1, 0)) p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (T - i * BT, i_v * BV), (BT, BV), (1, 0)) p_dk = tl.make_block_ptr(dk + (i_bh+i_v*B*H).to(tl.int64) * T*K, (T, K), (K, 1), (T - i*BT, i_k*BK), (BT, BK), (1, 0)) p_dv = tl.make_block_ptr(dv + (i_bh+i_k*B*H).to(tl.int64) * T*V, (T, V), (V, 1), (T - i*BT, i_v*BV), (BT, BV), (1, 0)) # [K, BT] b_q = tl.load(p_q, boundary_check=(0, 1)) # [BT, BK] b_k = tl.load(p_k, boundary_check=(0, 1)) # [BT, BV] b_v = tl.load(p_v, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)) b_dd = (b_do * d_q[:, None]).to(b_do.dtype) # [BT, BT] b_ds = tl.dot(b_v, tl.trans(b_do), allow_tf32=False) b_ds = (b_ds * d_s).to(b_k.dtype) # [BT, BT] b_s = tl.dot(b_k, b_q, allow_tf32=False) * d_s # [BT, BK] b_dk = tl.dot(b_ds, tl.trans(b_q), allow_tf32=False) # [BT, BV] b_dv = tl.dot(b_s.to(b_q.dtype), b_do, allow_tf32=False) if CHECK and i == 1: b_dk += tl.dot(b_v, tl.trans(b_dh).to(b_v.dtype), allow_tf32=False) * d_k[:, None] b_dv += tl.dot(b_k, b_dh.to(b_k.dtype), allow_tf32=False) * d_k[:, None] b_dh = d_b * b_dh + tl.dot(b_q, b_dd, allow_tf32=False) else: b_dk += tl.dot(b_v, tl.trans(b_dh).to(b_v.dtype), allow_tf32=False) * d_k[:, None] b_dv += tl.dot(b_k, b_dh.to(b_k.dtype), allow_tf32=False) * d_k[:, None] b_dh = d_b * b_dh + tl.dot(b_q, b_dd, allow_tf32=False) tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1)) class FusedChunkRetentionFunction(torch.autograd.Function): @staticmethod @input_guard @autocast_custom_fwd def forward(ctx, q, k, v, scale, initial_state, output_final_state): B, H, T, K, V = *k.shape, v.shape[-1] BT = 64 BK, BV = min(triton.next_power_of_2(K), 64), min(triton.next_power_of_2(V), 64) NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV) num_stages = 1 num_warps = 4 o = q.new_empty(NK, B, H, T, V) if output_final_state: final_state = q.new_empty(B, H, K, V, dtype=torch.float, requires_grad=False) else: final_state = None # the bug still exists even for Triton 2.2 on H100 GPUs # so we always enable initial checks CHECK = True if version.parse(triton.__version__) < version.parse('2.2.0'): import warnings warnings.warn( "Triton<2.2.0 detected for running this kernel, " "which is known to have some weird compiler issues (refer to https://github.com/openai/triton/issues/2852) " "that lead to significant precision loss. " "We've add some initial condition checks to resolve this, sadly at the sacrifice of the speed. " "For optimal performance, it is recommended to install Triton>=2.2.0 (if possible)." ) CHECK = True grid = (NV, NK, B * H) fused_chunk_retention_fwd_kernel[grid]( q, k, v, o, initial_state, final_state, scale, T=T, B=B, H=H, K=K, V=V, BT=BT, BK=BK, BV=BV, USE_INITIAL_STATE=initial_state is not None, STORE_FINAL_STATE=output_final_state, CHECK=CHECK, num_warps=num_warps, num_stages=num_stages ) o = o.sum(0) ctx.save_for_backward(q, k, v, initial_state) ctx.CHECK = CHECK return o.to(q.dtype), final_state @staticmethod @input_guard @autocast_custom_bwd def backward(ctx, do, dht=None): q, k, v, initial_state = ctx.saved_tensors B, H, T, K, V = *k.shape, v.shape[-1] scale = K ** -0.5 BT = 64 BK, BV = min(triton.next_power_of_2(K), 64), min(triton.next_power_of_2(V), 64) NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV) num_stages = 1 num_warps = 4 dq = q.new_empty(NV, B, H, T, K) dk = q.new_empty(NV, B, H, T, K) dv = q.new_empty(NK, B, H, T, V) grid = (NV, NK, B * H) fused_chunk_retention_bwd_kernel[grid]( q, k, v, do, dq, dk, dv, initial_state, scale, T=T, B=B, H=H, K=K, V=V, BT=BT, BK=BK, BV=BV, USE_INITIAL_STATE=initial_state is not None, CHECK=ctx.CHECK, num_warps=num_warps, num_stages=num_stages ) dq = dq.sum(0) dk = dk.sum(0) dv = dv.sum(0) return dq.to(q.dtype), dk.to(k.dtype), dv.to(v.dtype), None, None, None def fused_chunk_retention( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, scale: Optional[float] = None, initial_state: Optional[torch.Tensor] = None, output_final_state: bool = False, head_first: bool = True ) -> Tuple[torch.Tensor, torch.Tensor]: r""" Args: q (torch.Tensor): queries of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]` k (torch.Tensor): keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]` v (torch.Tensor): values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]` scale (Optional[int]): Scale factor for the attention scores. If not provided, it will default to `1 / sqrt(K)`. Default: `None`. initial_state (Optional[torch.Tensor]): Initial state of shape `[B, H, K, V]`. Default: `None`. output_final_state (Optional[bool]): Whether to output the final state of shape `[B, H, K, V]`. Default: `False`. head_first (Optional[bool]): Whether the inputs are in the head-first format. Default: `True`. Returns: o (torch.Tensor): Outputs of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`. final_state (torch.Tensor): Final state of shape `[B, H, K, V]` if `output_final_state=True` else `None`. """ if scale is None: scale = k.shape[-1] ** -0.5 if not head_first: q = q.transpose(1, 2) k = k.transpose(1, 2) v = v.transpose(1, 2) o, final_state = FusedChunkRetentionFunction.apply(q, k, v, scale, initial_state, output_final_state) if not head_first: o = o.transpose(1, 2) return o, final_state