# -*- coding: utf-8 -*- # Copyright (c) 2023-2025, Songlin Yang, Yu Zhang from typing import Optional import torch from einops import rearrange, repeat def naive_nsa( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, indices: torch.LongTensor, block_size: int = 64, scale: Optional[float] = None, head_first: bool = False, cu_seqlens: Optional[torch.LongTensor] = None ) -> torch.Tensor: r""" Args: q (torch.Tensor): queries of shape `[B, HQ, T, K]` if `head_first=True` else `[B, T, HQ, K]`. k (torch.Tensor): keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`. GQA is enforced here. The ratio of query heads (HQ) to key/value heads (H) must be a power of 2 and >=16. v (torch.Tensor): values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`. indices (torch.LongTensor): Block indices of shape `[B, T, H, S]` if `head_first=True` else `[B, T, H, S]`. `S` is the number of selected blocks for each query token, which is set to 16 in the paper. block_size (int): Selected block size. Default: 64. scale (Optional[int]): Scale factor for attention scores. If not provided, it will default to `1 / sqrt(K)`. Default: `None`. head_first (Optional[bool]): Whether the inputs are in the head-first format. Default: `False`. cu_seqlens (torch.LongTensor): Cumulative sequence lengths of shape `[N+1]` used for variable-length training, consistent with the FlashAttention API. Returns: o (torch.Tensor): Outputs of shape `[B, HQ, T, V]` if `head_first=True` else `[B, T, HQ, V]`. """ if scale is None: scale = k.shape[-1] ** -0.5 if cu_seqlens is not None: if head_first: raise RuntimeError("Sequences with variable lengths are not supported for head-first mode") if head_first: q, k, v, indices = map(lambda x: rearrange(x, 'b h t d -> b t h d'), (q, k, v, indices)) dtype = q.dtype G = q.shape[2] // k.shape[2] BS = block_size k, v, indices = (repeat(x, 'b t h d -> b t (h g) d', g=G) for x in (k, v, indices)) q, k, v = map(lambda x: x.float(), (q, k, v)) o = torch.zeros_like(v) varlen = True if cu_seqlens is None: varlen = False B, T = q.shape[:2] cu_seqlens = torch.cat([indices.new_tensor(range(0, B*T, T)), indices.new_tensor([B*T])]) for i in range(len(cu_seqlens) - 1): if not varlen: q_b, k_b, v_b, i_b = q[i], k[i], v[i], indices[i] else: T = cu_seqlens[i+1] - cu_seqlens[i] q_b, k_b, v_b, i_b = map(lambda x: x[0][cu_seqlens[i]:cu_seqlens[i+1]], (q, k, v, indices)) i_b = i_b.unsqueeze(-1) * BS + i_b.new_tensor(range(BS)) # [T, S*BS, HQ] i_b = i_b.view(T, indices.shape[2], -1).transpose(1, 2) for i_q in range(T): # [HQ, D] q_i = q_b[i_q] * scale # [S*BS, HQ] i_i = i_b[i_q] # [S*BS, HQ, -1] k_i, v_i = map(lambda x: x.gather(0, i_i.clamp(0, T-1).unsqueeze(-1).expand(*i_i.shape, x.shape[-1])), (k_b, v_b)) # [S*BS, HQ] attn = torch.einsum('h d, n h d -> n h', q_i, k_i).masked_fill(i_i > i_q, float('-inf')).softmax(0) if not varlen: o[i, i_q] = torch.einsum('n h, n h v -> h v', attn, v_i) else: o[0][cu_seqlens[i]+i_q] = torch.einsum('n h, n h v -> h v', attn, v_i) if head_first: o = rearrange(o, 'b t h d -> b h t d') return o.to(dtype)