# Chunkwise-form Parallelism of DeltaNet This section expands on the formulation presented in Appendix B of the DeltaNet paper.[^1] To reduce notational clutter, we focus on the first chunk, denoting $\mathbf{S}^r=\mathbf{S}_{[1]}^r$. By partially expanding the recurrence, we have: ```math \begin{equation} \begin{aligned} \mathbf{S}^r &= \underbrace{\left(\prod_{i=1}^r \mathbf{I} - \beta^i \boldsymbol{k}^i \boldsymbol{k}^{i\top} \right)}_{:= \mathbf{P}^r} \cdot\mathbf{S}^{0} + \overbrace{\sum_{i=1}^{r} \underbrace{\left(\prod_{j=i+1}^r \mathbf{I} - \beta^j \boldsymbol{k}^j \boldsymbol{k}^{j\top} \right)}_{:= \mathbf{P}_{i+1}^r}\beta^i \boldsymbol{k}^i\boldsymbol{v}^{i\top}}^{:=\mathbf{H}^r} \\ &=\mathbf{P}^r \cdot \mathbf{S}^{0} + \mathbf{H}^r \end{aligned} \end{equation} ``` where $\mathbf{P}_i^r$ involves cumulative products of generalized Householder matrices. We abbreviate $\mathbf{P}_1^r$ as $\mathbf{P}^r$. This can be optimized using the classical WY representation: ```math \begin{equation} \mathbf{P}^{r} = \mathbf{I} - \sum_{i=1}^{r}\boldsymbol{k}^i\boldsymbol{w}^{i\top} \in \mathbb{R}^{d_k \times d_k};\qquad \boldsymbol{w}^r = \beta^r \left(\boldsymbol{k}^r - \sum_{i=1}^{r-1} \left(\boldsymbol{k}^{r\top}\boldsymbol{k}^i \right)\boldsymbol{w}^i \right) \in \mathbb{R}^{d_k} \end{equation} ``` We prove this by induction: ```math \begin{align*} \mathbf{P}^{r} &= \prod_{i=1}^r \mathbf{I} - \beta^i \boldsymbol{k}^i \boldsymbol{k}^{i\top} \\ &= \left(\mathbf{I} - \beta^r \boldsymbol{k}^r \boldsymbol{k}^{r\top}\right)\mathbf{P}^{r-1} \\ &= \left(\mathbf{I} - \beta^r \boldsymbol{k}^r \boldsymbol{k}^{r\top}\right)\left(\mathbf{I} - \sum_{i=1}^{r-1}\boldsymbol{k}^i\boldsymbol{w}^{i\top}\right) \\ &= \mathbf{I} - \sum_{i=1}^{r-1}\boldsymbol{k}^i\boldsymbol{w}^{i\top} - \beta^r \boldsymbol{k}^r \boldsymbol{k}^{r\top} + \beta^r\boldsymbol{k}^r \boldsymbol{k}^{r\top} \left(\sum_{i=1}^{r-1}\boldsymbol{k}^i\boldsymbol{w}^{i\top}\right) \\ &= \mathbf{I} - \sum_{i=1}^{r-1}\boldsymbol{k}^i\boldsymbol{w}^{i\top} - \beta^r \boldsymbol{k}^r \left(\boldsymbol{k}^{r} - \left(\sum_{i=1}^{r-1}\left(\boldsymbol{k}^{r\top} \boldsymbol{k}^i\right)\boldsymbol{w}^{i}\right) \right)^\top \\ &= \mathbf{I} - \sum_{i=1}^{r}\boldsymbol{k}^i\boldsymbol{w}^{i\top} \end{align*} ``` Similarly, $\mathbf{H}^r$ can be represented as: ```math \begin{equation} \mathbf{H}^{r} = \sum_{i=1}^{r} \boldsymbol{k}^i \boldsymbol{u}^{i\top} \in \mathbb{R}^{d_k \times d_v};\qquad \boldsymbol{u}^r = \beta^r \left(\boldsymbol{v}^r - \sum_{i=1}^{r-1} \left(\boldsymbol{k}^{r\top}\boldsymbol{k}^i\right) \boldsymbol{u}^i \right)\in \mathbb{R}^{d_v} \end{equation} ``` This can also be proven by induction: ```math \begin{align*} \mathbf{H}^{r} &= \sum_{i=1}^{r} \mathbf{P}_{i+1}^r \beta^i \boldsymbol{k}^i \boldsymbol{v}^{i\top}\\ &= \left(\mathbf{I} - \beta^r \boldsymbol{k}^r \boldsymbol{k}^{r\top}\right) \mathbf{H}^{r-1} + \beta^r \boldsymbol{k}^r \boldsymbol{v}^{r\top}\\ &= \sum_{i=1}^{r-1}\boldsymbol{k}^i \boldsymbol{u}^{i\top} - \beta^r \boldsymbol{k}^r \boldsymbol{k}^{r\top} \sum_{i=1}^{r-1}\boldsymbol{k}^i \boldsymbol{u}^{i\top} +\beta^r \boldsymbol{k}^r \boldsymbol{v}^{r\top}\\ &= \sum_{i=1}^{r-1}\boldsymbol{k}^i \boldsymbol{u}^{i\top} + \boldsymbol{k}^r \left(\beta^r \boldsymbol{v}^{r\top}-\beta^r \boldsymbol{k}^{r\top} \sum_{i=1}^{r-1}\boldsymbol{k}^i \boldsymbol{u}^{i\top}\right) \\ &= \sum_{i=1}^{r-1}\boldsymbol{k}^i \boldsymbol{u}^{i\top} + \boldsymbol{k}^r \beta^r\left(\boldsymbol{v}^{r}-\sum_{i=1}^{r-1}\left(\boldsymbol{k}^{r\top}\boldsymbol{k}^{i}\right)\boldsymbol{u}^{i} \right)^\top \\ &=\sum_{i=1}^{r} \boldsymbol{k}^i \boldsymbol{u}^{i\top} \end{align*} ``` In matrix form, $\mathbf{P}$ and $\mathbf{H}$ can be written as: ```math \begin{equation} \mathbf{P}=\mathbf{I}-\mathbf{K}^\top\mathbf{W} \in \mathbb{R}^{d_k \times d_k}, \qquad\mathbf{H}=\mathbf{K}^\top\mathbf{U} \in \mathbb{R}^{d_k\times d_v} \end{equation} ``` Now we can derive the matrix form of $\mathbf{W}$ and $\mathbf{U}$: ```math \begin{align*} \mathbf{W} &= \mathrm{diag}(\beta) \mathbf{K} - \mathrm{tril}(\mathrm{diag}(\beta) \mathbf{K}\mathbf{K}^\top, -1)\mathbf{W}\\ \left(\mathbf{I} + \mathrm{tril}(\mathrm{diag}(\beta) \mathbf{K}\mathbf{K}^\top, -1)\right) \mathbf{W} &= \mathrm{diag}(\beta) \mathbf{K} \end{align*} ``` A similar process holds for $\mathbf{U}$. We can further write $\mathbf{W}$ and $\mathbf{U}$ in matrix form: ```math \begin{align*} \mathbf{T} &= \left(\mathbf{I} + \mathrm{tril}\left(\mathrm{diag}(\beta)\mathbf{K} \mathbf{K}^\top,-1\right)\right)^{-1}\mathrm{diag}\left(\beta\right)\in \mathbb{R}^{C \times C}\\ \mathbf{W} &= \mathbf{T} \mathbf{K}\in \mathbb{R}^{C \times d_k}\\ \mathbf{U} &= \mathbf{T}\mathbf{V}\in \mathbb{R}^{C \times d_v} \end{align*} ``` Substituting these back into the original equations yields a hardware-efficient chunkwise algorithm for DeltaNet that leverages matrix multiplications, enabling tensor core based GPU optimization: ```math \begin{equation} \begin{aligned} \mathbf{S} &= \mathbf{P}\cdot\mathbf{S}^0 + \mathbf{H} \\ &= \mathbf{S}^0 + \mathbf{K}^\top (\mathbf{U} -\mathbf{W} \mathbf{S}^0) \in \mathbb{R}^{d_k \times d_v}\\ \mathbf{O} &= \mathbf{Q} \mathbf{S}^0 + (\mathbf{Q} \mathbf{K}^{\top} \odot \mathbf{M}) \left(\mathbf{U} - \mathbf{W} \mathbf{S}^0\right) \in \mathbb{R}^{C \times d_v} \end{aligned} \end{equation} ``` [^1]: https://arxiv.org/abs/2406.06484