# -*- coding: utf-8 -*- from typing import Optional from transformers.configuration_utils import PretrainedConfig class NSAConfig(PretrainedConfig): model_type = 'nsa' keys_to_ignore_at_inference = ['past_key_values'] def __init__( self, hidden_size: int = 2048, num_hidden_layers: int = 24, num_heads: int = 64, num_kv_heads: int = 4, head_dim: int = 32, qkv_bias: bool = False, block_size: int = 64, block_counts: Optional[int] = 16, window_size: Optional[int] = 512, rope_theta: Optional[float] = 10000., max_position_embeddings: int = 2048, hidden_ratio: Optional[int] = 4, intermediate_size: Optional[int] = None, hidden_act: str = "swish", initializer_range: float = 0.006, elementwise_affine: Optional[bool] = True, norm_eps: float = 1e-6, use_cache: bool = True, pad_token_id: int = None, bos_token_id: int = 1, eos_token_id: int = 2, tie_word_embeddings: bool = False, fuse_norm: bool = True, fuse_swiglu: bool = True, fuse_cross_entropy: bool = True, vocab_size: int = 32000, **kwargs, ): self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_heads = num_heads self.num_kv_heads = num_kv_heads self.head_dim = head_dim self.qkv_bias = qkv_bias self.block_size = block_size self.block_counts = block_counts self.window_size = window_size self.rope_theta = rope_theta self.max_position_embeddings = max_position_embeddings self.hidden_ratio = hidden_ratio self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.initializer_range = initializer_range self.elementwise_affine = elementwise_affine self.norm_eps = norm_eps self.use_cache = use_cache self.fuse_norm = fuse_norm self.fuse_swiglu = fuse_swiglu self.fuse_cross_entropy = fuse_cross_entropy self.vocab_size = vocab_size super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )