# -*- coding: utf-8 -*- from typing import Dict, Optional from transformers.configuration_utils import PretrainedConfig class LinearAttentionConfig(PretrainedConfig): model_type = 'linear_attn' keys_to_ignore_at_inference = ['past_key_values'] def __init__( self, attn_mode: str = "fused_chunk", hidden_size: int = 2048, expand_k: int = 1, expand_v: int = 1, hidden_ratio: Optional[int] = 4, intermediate_size: Optional[int] = None, num_hidden_layers: int = 24, num_heads: int = 4, num_kv_heads: Optional[int] = None, feature_map: str = "elementwise_product", tie_feature_map_qk: bool = False, norm_q: bool = False, norm_k: bool = False, norm_feature_map: bool = False, hidden_act: str = "swish", max_position_embeddings: int = 2048, elementwise_affine: Optional[bool] = True, norm_eps: float = 1e-6, attn: Optional[Dict] = None, use_cache: bool = True, pad_token_id: int = None, bos_token_id: int = 1, eos_token_id: int = 2, tie_word_embeddings: bool = False, initializer_range: float = 0.006, fuse_norm: bool = True, fuse_swiglu: bool = True, fuse_cross_entropy: bool = True, vocab_size: int = 32000, **kwargs ): self.attn_mode = attn_mode self.hidden_size = hidden_size self.expand_k = expand_k self.expand_v = expand_v self.hidden_ratio = hidden_ratio self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_heads = num_heads self.num_kv_heads = num_kv_heads self.feature_map = feature_map self.tie_feature_map_qk = tie_feature_map_qk self.norm_q = norm_q self.norm_k = norm_k self.norm_feature_map = norm_feature_map self.hidden_act = hidden_act self.max_position_embeddings = max_position_embeddings self.elementwise_affine = elementwise_affine self.norm_eps = norm_eps self.attn = attn self.use_cache = use_cache self.initializer_range = initializer_range self.fuse_norm = fuse_norm self.fuse_swiglu = fuse_swiglu self.fuse_cross_entropy = fuse_cross_entropy self.vocab_size = vocab_size if attn is not None: if not isinstance(attn, Dict): raise ValueError("attn must be a dictionary") if 'layers' not in attn: raise ValueError("Layer indices must be provided to initialize hybrid attention layers") if 'num_heads' not in attn: raise ValueError("Number of heads must be provided to initialize hybrid attention layers") attn['num_kv_heads'] = attn.get('num_kv_heads', attn['num_heads']) attn['qkv_bias'] = attn.get('qkv_bias', False) attn['window_size'] = attn.get('window_size', None) attn['rope_theta'] = attn.get('rope_theta', 10000.) super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )