# -*- coding: utf-8 -*- # Copyright (c) 2023-2025, Songlin Yang, Yu Zhang # ["You Only Scan Once: Efficient Multi-dimension Sequential Modeling with LightNet"](https://arxiv.org/abs/2405.21022) from __future__ import annotations from typing import TYPE_CHECKING, Dict, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from fla.modules import FusedRMSNormGated, ShortConvolution from fla.modules.fused_norm_gate import rms_norm_swish_gate_linear from fla.ops.gla import chunk_gla, fused_recurrent_gla if TYPE_CHECKING: from transformers.processing_utils import Unpack from fla.models.utils import Cache class LightNetAttention(nn.Module): def __init__( self, mode: str = 'chunk', hidden_size: int = 1024, num_heads: Optional[int] = None, expand_ratio: Optional[int] = 128, use_short_conv: bool = False, conv_size: int = 4, conv_bias: bool = False, gate_low_rank_dim: int = 128, elementwise_affine: Optional[bool] = True, norm_eps: float = 1e-5, layer_idx: int = None ) -> LightNetAttention: super().__init__() self.mode = mode self.hidden_size = hidden_size if expand_ratio is None and num_heads is not None: expand_ratio = hidden_size // num_heads elif expand_ratio is not None and num_heads is None: num_heads = hidden_size // expand_ratio elif expand_ratio is None and num_heads is None: raise RuntimeError("One of `expand_ratio` or `num_heads` should be provided.") self.num_heads = num_heads self.expand_ratio = expand_ratio self.use_short_conv = use_short_conv self.conv_size = conv_size self.conv_bias = conv_bias self.key_dim = int(self.num_heads * self.expand_ratio) self.value_dim = hidden_size self.gate_low_rank_dim = gate_low_rank_dim self.layer_idx = layer_idx assert mode in ['chunk', 'fused_chunk'], f"Not suppoerted mode `{mode}`." assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}" assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}" self.head_f_dim = self.expand_ratio self.head_i_dim = self.hidden_size // num_heads self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False) self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False) self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False) if use_short_conv: self.conv_size = conv_size self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation=None) self.k_conv1d = ShortConvolution(self.key_dim, conv_size, activation=None) self.v_conv1d = ShortConvolution(self.value_dim, conv_size, activation=None) self.g_proj = nn.Sequential( nn.Linear(hidden_size, gate_low_rank_dim, bias=False), nn.Linear(gate_low_rank_dim, hidden_size, bias=False) ) self.g_norm = FusedRMSNormGated( hidden_size=hidden_size, elementwise_affine=elementwise_affine, eps=norm_eps ) self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Cache] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, **kwargs: Unpack[Dict] ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]: if attention_mask is not None: assert len(attention_mask.shape) == 2, ( "Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] " "for padding purposes (0 indicating padding). " "Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed." ) # launching the triton kernel for just one token will actually be slower mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode last_state = None if past_key_values is not None and len(past_key_values) > self.layer_idx: last_state = past_key_values[self.layer_idx] cu_seqlens = kwargs.get('cu_seqlens', None) if self.use_short_conv: conv_state_q, conv_state_k, conv_state_v = None, None, None if last_state is not None: conv_state_q, conv_state_k, conv_state_v = last_state['conv_state'] conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None q, conv_state_q = self.q_conv1d( x=self.q_proj(hidden_states), mask=conv_mask, cache=conv_state_q, output_final_state=use_cache, cu_seqlens=cu_seqlens ) k, conv_state_k = self.k_conv1d( x=self.k_proj(hidden_states), mask=conv_mask, cache=conv_state_k, output_final_state=use_cache, cu_seqlens=cu_seqlens ) v, conv_state_v = self.v_conv1d( x=self.v_proj(hidden_states), mask=conv_mask, cache=conv_state_v, output_final_state=use_cache, cu_seqlens=cu_seqlens ) else: q = self.q_proj(hidden_states) k = self.k_proj(hidden_states) v = self.v_proj(hidden_states) # dealing with left-padding if attention_mask is not None: v = v.mul_(attention_mask[:, -v.shape[-2]:, None]) q = F.silu(q) q, k = map(lambda x: rearrange(x, '... (h d) -> ... h d', d=self.head_f_dim), (q, k)) v = rearrange(v, '... (h d) -> ... h d', d=self.head_i_dim) # TODO: this 2 steps took huge amount of time, which should be optimized z = k.float().logcumsumexp(1) if cu_seqlens is not None: raise NotImplementedError("LightNet does not support variable-length sequences for now.") k, g = torch.exp(k - z).to(k.dtype), (torch.cat((z[:, :1], z[:, :-1]), 1) - z).to(k.dtype) recurrent_state = last_state['recurrent_state'] if last_state is not None else None if mode == 'fused_recurrent': o, recurrent_state = fused_recurrent_gla( q=q, k=k, v=v, gk=g, initial_state=recurrent_state, output_final_state=use_cache, cu_seqlens=cu_seqlens, head_first=False ) elif mode == 'chunk': o, recurrent_state = chunk_gla( q=q, k=k, v=v, g=g, initial_state=recurrent_state, output_final_state=use_cache, cu_seqlens=cu_seqlens, head_first=False ) else: raise NotImplementedError(f"Not supported mode `{mode}`.") if past_key_values is not None: past_key_values.update( recurrent_state=recurrent_state, conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None, layer_idx=self.layer_idx, offset=q.shape[1] ) o = rms_norm_swish_gate_linear( rearrange(o, 'b t h d -> b t (h d)'), self.g_proj(hidden_states), self.g_norm.weight, self.g_norm.bias, self.o_proj.weight, self.o_proj.bias ) return o, None, past_key_values def state_size(self, **kwargs) -> int: state_size = self.key_dim * self.head_i_dim for module in self.children(): if isinstance(module, ShortConvolution): state_size += module.state_size return state_size