# -*- coding: utf-8 -*- # Copyright (c) 2023-2025, Songlin Yang, Yu Zhang from __future__ import annotations from typing import TYPE_CHECKING, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint from einops import rearrange from transformers.utils import logging from fla.modules import GroupNorm from fla.ops.forgetting_attn.parallel import parallel_forgetting_attn if TYPE_CHECKING: from fla.models.utils import Cache logger = logging.get_logger(__name__) class ForgettingAttention(nn.Module): def __init__( self, hidden_size: int = 2048, num_heads: int = 32, num_kv_heads: Optional[int] = None, qkv_bias: bool = False, qk_norm: bool = False, window_size: Optional[int] = None, use_output_gate: bool = False, layer_idx: int = None ): super().__init__() self.hidden_size = hidden_size self.num_heads = num_heads if num_kv_heads is None: self.num_kv_heads = self.num_heads else: self.num_kv_heads = num_kv_heads self.num_kv_groups = num_heads // self.num_kv_heads self.head_dim = self.hidden_size // self.num_heads self.kv_dim = self.num_kv_heads * self.head_dim self.qkv_bias = qkv_bias self.qk_norm = qk_norm self.window_size = window_size self.use_output_gate = use_output_gate self.layer_idx = layer_idx self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=self.qkv_bias) self.k_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=self.qkv_bias) self.v_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=self.qkv_bias) self.f_proj = nn.Linear(self.hidden_size, self.num_heads, bias=True) if use_output_gate: self.g_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) if qk_norm: self.q_norm = GroupNorm( num_groups=self.num_heads, hidden_size=self.hidden_size, is_rms_norm=True, ) self.k_norm = GroupNorm( num_groups=self.num_kv_heads, hidden_size=self.kv_dim, is_rms_norm=True, ) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if attention_mask is not None: assert len(attention_mask.shape) == 2, ( "Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] " "for padding purposes (0 indicating padding). " "Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed." ) cu_seqlens = kwargs.get('cu_seqlens', None) q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states) f = F.logsigmoid(self.f_proj(hidden_states).float()) if self.qk_norm: q, k = self.q_norm(q), self.k_norm(k) q = rearrange(q, '... (h d) -> ... h d', d=self.head_dim) k = rearrange(k, '... (h d) -> ... h d', d=self.head_dim) v = rearrange(v, '... (h d) -> ... h d', d=self.head_dim) o = parallel_forgetting_attn(q, k, v, f, cu_seqlens=cu_seqlens) o = rearrange(o, '... h d -> ... (h d)') if self.use_output_gate: o = self.g_proj(hidden_states).sigmoid() * o o = self.o_proj(o) return o, None, past_key_values