# -*- coding: utf-8 -*- # Copyright (c) 2023-2025, Songlin Yang, Yu Zhang from typing import Optional, Tuple import torch import triton import triton.language as tl from fla.utils import check_shared_mem, is_nvidia_hopper NUM_WARPS = [2, 4] if is_nvidia_hopper else [2, 4, 8] @triton.heuristics({ 'USE_OFFSETS': lambda args: args['offsets'] is not None }) @triton.autotune( configs=[ triton.Config({}, num_warps=num_warps) for num_warps in [1, 2, 4, 8, 16] ], key=['BK'] ) @triton.jit(do_not_specialize=['T']) def fwd_prepare_wy_repr_kernel_chunk32( a, b, A, offsets, indices, T, H: tl.constexpr, K: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BC: tl.constexpr, # dummy placeholder USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr, ): i_t, i_bh = tl.program_id(0), tl.program_id(1) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos else: bos, eos = i_b * T, i_b * T + T b_A = tl.zeros([BT, BT], dtype=tl.float32) for i_k in range(tl.cdiv(K, BK)): if HEAD_FIRST: p_a = tl.make_block_ptr(a + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_b = tl.make_block_ptr(b + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) else: p_a = tl.make_block_ptr(a + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_b = tl.make_block_ptr(b + (bos * H + i_h) * K, (K, T), (1, K*H), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) b_a = tl.load(p_a, boundary_check=(0, 1)) b_b = tl.load(p_b, boundary_check=(0, 1)) b_A += tl.dot(b_a, b_b) b_A = tl.where(tl.arange(0, BT)[:, None] > tl.arange(0, BT)[None, :], b_A, 0) for i in range(1, BT): mask = tl.arange(0, BT) == i b_a = tl.sum(tl.where(mask[:, None], b_A, 0), 0) b_a = b_a + tl.sum(b_a[:, None] * b_A, 0) * (tl.arange(0, BT) < i) b_A = tl.where(mask[:, None], b_a, b_A) b_A += tl.arange(0, BT)[:, None] == tl.arange(0, BT)[None, :] if HEAD_FIRST: p_A = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) else: p_A = tl.make_block_ptr(A + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) tl.store(p_A, b_A.to(p_A.dtype.element_ty), boundary_check=(0, 1)) @triton.heuristics({ 'USE_OFFSETS': lambda args: args['offsets'] is not None }) @triton.autotune( configs=[ triton.Config({}, num_warps=num_warps) for num_warps in [1, 2, 4, 8, 16] ], key=['BK'] ) @triton.jit(do_not_specialize=['T']) def fwd_prepare_wy_repr_kernel_chunk64( a, b, A, offsets, indices, T, H: tl.constexpr, K: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BC: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr ): i_t, i_bh = tl.program_id(0), tl.program_id(1) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos else: bos, eos = i_b * T, i_b * T + T b_A = tl.zeros([BC, BC], dtype=tl.float32) b_A2 = tl.zeros([BC, BC], dtype=tl.float32) b_A3 = tl.zeros([BC, BC], dtype=tl.float32) for i_k in range(tl.cdiv(K, BK)): if HEAD_FIRST: p_a1 = tl.make_block_ptr(a + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BC, BK), (1, 0)) p_a2 = tl.make_block_ptr(a + i_bh * T*K, (T, K), (K, 1), (i_t * BT + BC, i_k * BK), (BC, BK), (1, 0)) p_b1 = tl.make_block_ptr(b + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BC), (0, 1)) p_b2 = tl.make_block_ptr(b + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + BC), (BK, BC), (0, 1)) else: p_a1 = tl.make_block_ptr(a + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BC, BK), (1, 0)) p_a2 = tl.make_block_ptr(a + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + BC, i_k * BK), (BC, BK), (1, 0)) p_b1 = tl.make_block_ptr(b + (bos * H + i_h) * K, (K, T), (1, K*H), (i_k * BK, i_t * BT), (BK, BC), (0, 1)) p_b2 = tl.make_block_ptr(b + (bos * H + i_h) * K, (K, T), (1, K*H), (i_k * BK, i_t * BT + BC), (BK, BC), (0, 1)) b_a1 = tl.load(p_a1, boundary_check=(0, 1)) b_a2 = tl.load(p_a2, boundary_check=(0, 1)) b_b1 = tl.load(p_b1, boundary_check=(0, 1)) b_b2 = tl.load(p_b2, boundary_check=(0, 1)) b_A += tl.dot(b_a1, b_b1, allow_tf32=False) b_A2 += tl.dot(b_a2, b_b2, allow_tf32=False) b_A3 += tl.dot(b_a2, b_b1, allow_tf32=False) b_A = tl.where(tl.arange(0, BC)[:, None] > tl.arange(0, BC)[None, :], b_A, 0) b_A2 = tl.where(tl.arange(0, BC)[:, None] > tl.arange(0, BC)[None, :], b_A2, 0) for i in range(1, BC): mask = tl.arange(0, BC) == i b_a = tl.sum(tl.where(mask[:, None], b_A, 0), 0) b_a2 = tl.sum(tl.where(mask[:, None], b_A2, 0), 0) b_a = b_a + tl.sum(b_a[:, None] * b_A, 0) * (tl.arange(0, BC) < i) b_a2 = b_a2 + tl.sum(b_a2[:, None] * b_A2, 0) * (tl.arange(0, BC) < i) b_A = tl.where(mask[:, None], b_a, b_A) b_A2 = tl.where(mask[:, None], b_a2, b_A2) # blockwise computation of lower triangular matrix's inverse # i.e., [A11, 0; A21, A22]^-1 = [A11^-1, 0; -A22^-1 A21 A11^-1, A22^-1] b_A += tl.arange(0, BC)[:, None] == tl.arange(0, BC)[None, :] b_A2 += tl.arange(0, BC)[:, None] == tl.arange(0, BC)[None, :] b_A3 = tl.dot(tl.dot(b_A2, b_A3, allow_tf32=False), b_A, allow_tf32=False) if HEAD_FIRST: p_A1 = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BC, BC), (1, 0)) p_A2 = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT + BC, BC), (BC, BC), (1, 0)) p_A3 = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT + BC, 0), (BC, BC), (1, 0)) p_A4 = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, BC), (BC, BC), (1, 0)) else: p_A1 = tl.make_block_ptr(A + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BC, BC), (1, 0)) p_A2 = tl.make_block_ptr(A + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT + BC, BC), (BC, BC), (1, 0)) p_A3 = tl.make_block_ptr(A + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT + BC, 0), (BC, BC), (1, 0)) p_A4 = tl.make_block_ptr(A + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, BC), (BC, BC), (1, 0)) tl.store(p_A1, b_A.to(p_A1.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_A2, b_A2.to(p_A2.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_A3, b_A3.to(p_A3.dtype.element_ty), boundary_check=(0, 1)) # causal mask tl.store(p_A4, tl.zeros([BC, BC], dtype=tl.float32).to(p_A4.dtype.element_ty), boundary_check=(0, 1)) @triton.heuristics({ 'USE_OFFSETS': lambda args: args['offsets'] is not None }) @triton.autotune( configs=[ triton.Config({}, num_warps=num_warps) for num_warps in NUM_WARPS ], key=['BT', 'BK', 'BV'] ) @triton.jit(do_not_specialize=['T']) def fwd_wu_kernel( w, u, a, k, v, A, offsets, indices, T, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr ): i_t, i_bh = tl.program_id(0), tl.program_id(1) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos else: bos, eos = i_b * T, i_b * T + T if HEAD_FIRST: p_A = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) else: p_A = tl.make_block_ptr(A + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) b_A = tl.load(p_A, boundary_check=(0, 1)) b_Aak = tl.zeros([BT, BT], dtype=tl.float32) for i_k in range(tl.cdiv(K, BK)): if HEAD_FIRST: p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_a = tl.make_block_ptr(a + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_w = tl.make_block_ptr(w + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) else: p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_a = tl.make_block_ptr(a + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_w = tl.make_block_ptr(w + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_a = tl.load(p_a, boundary_check=(0, 1)) b_w = tl.dot(b_A, b_a) b_Aak += tl.dot(b_a, tl.trans(b_k)) tl.store(p_w, b_w.to(p_w.dtype.element_ty), boundary_check=(0, 1)) b_Aak = tl.where(tl.arange(0, BT)[:, None] > tl.arange(0, BT)[None, :], b_Aak, 0) b_Aak = b_Aak.to(k.dtype.element_ty) for i_v in range(tl.cdiv(V, BV)): if HEAD_FIRST: p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_u = tl.make_block_ptr(u + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) else: p_v = tl.make_block_ptr(v + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_u = tl.make_block_ptr(u + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_v = tl.dot(b_Aak, b_v).to(v.dtype.element_ty) b_u = tl.dot(b_A, b_v) tl.store(p_u, b_u.to(p_u.dtype.element_ty), boundary_check=(0, 1)) def fwd_prepare_wy_repr( a: torch.Tensor, b: torch.Tensor, v: torch.Tensor, k: torch.Tensor, offsets: Optional[torch.LongTensor], indices: Optional[torch.LongTensor], head_first: bool = True, chunk_size: int = 64 ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: if head_first: B, H, T, K = a.shape else: B, T, H, K = a.shape BT = min(chunk_size, max(triton.next_power_of_2(T), 16)) NT = triton.cdiv(T, BT) if offsets is None else len(indices) BC = min(BT, 32) BK = min(triton.next_power_of_2(K), 64) A = torch.empty(B, *((H, T) if head_first else (T, H)), BT, device=a.device, dtype=a.dtype) fwd_fn = fwd_prepare_wy_repr_kernel_chunk64 if BT == 64 else fwd_prepare_wy_repr_kernel_chunk32 fwd_fn[(NT, B * H)]( a=a, b=b, A=A, offsets=offsets, indices=indices, T=T, H=H, K=K, BT=BT, BK=BK, BC=BC, HEAD_FIRST=head_first ) w, u = fwd_wu( a=a, v=v, k=k, A=A, offsets=offsets, indices=indices, head_first=head_first, chunk_size=chunk_size ) return w, u, A def fwd_wu( a: torch.Tensor, v: torch.Tensor, k: torch.Tensor, A: torch.Tensor, offsets: Optional[torch.LongTensor], indices: Optional[torch.LongTensor], head_first: bool, chunk_size: int ) -> Tuple[torch.Tensor, torch.Tensor]: if head_first: B, H, T, K, V = *a.shape, v.shape[-1] else: B, T, H, K, V = *a.shape, v.shape[-1] BT = min(chunk_size, max(triton.next_power_of_2(T), 16)) NT = triton.cdiv(T, BT) if offsets is None else len(indices) CONST_TILING = 64 if check_shared_mem() else 32 BK = min(triton.next_power_of_2(K), CONST_TILING) BV = min(triton.next_power_of_2(V), CONST_TILING) u = torch.empty_like(v) w = torch.empty_like(a) fwd_wu_kernel[(NT, B*H)]( a=a, v=v, w=w, u=u, A=A, k=k, offsets=offsets, indices=indices, T=T, H=H, K=K, V=V, BT=BT, BK=BK, BV=BV, HEAD_FIRST=head_first ) return w, u