# -*- coding: utf-8 -*- # Copyright (c) 2023-2025, Songlin Yang, Yu Zhang from typing import Optional, Tuple import torch import triton import triton.language as tl from fla.ops.common.utils import prepare_chunk_offsets from fla.ops.utils.op import exp from fla.utils import check_shared_mem, use_cuda_graph @triton.heuristics({ 'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None, 'USE_INITIAL_STATE': lambda args: args['dh0'] is not None, 'USE_OFFSETS': lambda args: args['offsets'] is not None, }) @triton.autotune( configs=[ triton.Config({}, num_warps=num_warps, num_stages=num_stages) for num_warps in [2, 4, 8, 16, 32] for num_stages in [2, 3, 4] ], key=['BT', 'BK', 'BV', "V"], use_cuda_graph=use_cuda_graph, ) @triton.jit(do_not_specialize=['T']) def chunk_dplr_bwd_kernel_dhu( qg, bg, w, gk, dht, dh0, do, dh, dv, dv2, offsets, chunk_offsets, T, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BC: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_FINAL_STATE_GRADIENT: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr ): i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_n, i_h = i_nh // H, i_nh % H if USE_OFFSETS: bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos NT = tl.cdiv(T, BT) boh = tl.load(chunk_offsets + i_n).to(tl.int32) else: bos, eos = i_n * T, i_n * T + T NT = tl.cdiv(T, BT) boh = i_n * NT # [BK, BV] b_dh = tl.zeros([BK, BV], dtype=tl.float32) if USE_FINAL_STATE_GRADIENT: p_dht = tl.make_block_ptr(dht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_dh += tl.load(p_dht, boundary_check=(0, 1)) mask_k = tl.arange(0, BK) < K for i_t in range(NT - 1, -1, -1): if HEAD_FIRST: p_dh = tl.make_block_ptr(dh + (i_nh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) else: p_dh = tl.make_block_ptr(dh + ((boh+i_t) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1)) b_dh_tmp = tl.zeros([BK, BV], dtype=tl.float32) for i_c in range(tl.cdiv(BT, BC) - 1, -1, -1): if HEAD_FIRST: p_qg = tl.make_block_ptr(qg + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1)) p_bg = tl.make_block_ptr(bg + i_nh * T*K, (T, K), (K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0)) p_w = tl.make_block_ptr(w + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1)) p_dv = tl.make_block_ptr(dv + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) p_do = tl.make_block_ptr(do + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) p_dv2 = tl.make_block_ptr(dv2 + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) else: p_qg = tl.make_block_ptr(qg+(bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1)) p_bg = tl.make_block_ptr(bg+(bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0)) p_w = tl.make_block_ptr(w+(bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1)) p_dv = tl.make_block_ptr(dv+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) p_do = tl.make_block_ptr(do+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) p_dv2 = tl.make_block_ptr(dv2+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) # [BK, BT] b_qg = tl.load(p_qg, boundary_check=(0, 1)) # [BT, BK] b_bg = tl.load(p_bg, boundary_check=(0, 1)) b_w = tl.load(p_w, boundary_check=(0, 1)) # [BT, V] b_do = tl.load(p_do, boundary_check=(0, 1)) b_dv = tl.load(p_dv, boundary_check=(0, 1)) b_dv2 = b_dv + tl.dot(b_bg, b_dh.to(b_bg.dtype)) tl.store(p_dv2, b_dv2.to(p_dv.dtype.element_ty), boundary_check=(0, 1)) # [BK, BV] b_dh_tmp += tl.dot(b_qg, b_do.to(b_qg.dtype)) b_dh_tmp += tl.dot(b_w, b_dv2.to(b_qg.dtype)) last_idx = min((i_t + 1) * BT, T) - 1 if HEAD_FIRST: bg_last = tl.load(gk + (i_nh * T + last_idx) * K + tl.arange(0, BK), mask=mask_k) else: bg_last = tl.load(gk + ((bos + last_idx) * H + i_h) * K + tl.arange(0, BK), mask=mask_k) b_dh *= exp(bg_last)[:, None] b_dh += b_dh_tmp if USE_INITIAL_STATE: p_dh0 = tl.make_block_ptr(dh0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1)) def chunk_dplr_bwd_dhu( qg: torch.Tensor, bg: torch.Tensor, w: torch.Tensor, gk: torch.Tensor, h0: torch.Tensor, dht: Optional[torch.Tensor], do: torch.Tensor, dv: torch.Tensor, offsets: Optional[torch.LongTensor] = None, indices: Optional[torch.LongTensor] = None, head_first: bool = True, chunk_size: int = 64 ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: if head_first: B, H, T, K, V = *qg.shape, do.shape[-1] else: B, T, H, K, V = *qg.shape, do.shape[-1] BT = min(chunk_size, max(triton.next_power_of_2(T), 16)) BK = triton.next_power_of_2(K) assert BK <= 256, "current kernel does not support head dimension being larger than 256." # H100 if check_shared_mem('hopper', qg.device.index): BV = 64 BC = 64 if K <= 128 else 32 elif check_shared_mem('ampere', qg.device.index): # A100 BV = 32 BC = 32 else: # Etc: 4090 BV = 16 BC = 16 # N: the actual number of sequences in the batch with either equal or variable lengths if offsets is None: N, NT, chunk_offsets = B, triton.cdiv(T, BT), None else: N, NT, chunk_offsets = len(offsets) - 1, len(indices), prepare_chunk_offsets(offsets, BT) BC = min(BT, BC) NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV) assert NK == 1, 'NK > 1 is not supported because it involves time-consuming synchronization' if head_first: dh = qg.new_empty(B, H, NT, K, V) else: dh = qg.new_empty(B, NT, H, K, V) dh0 = torch.empty_like(h0, dtype=torch.float32) if h0 is not None else None dv2 = torch.zeros_like(dv) grid = (NK, NV, N * H) chunk_dplr_bwd_kernel_dhu[grid]( qg=qg, bg=bg, w=w, gk=gk, dht=dht, dh0=dh0, do=do, dh=dh, dv=dv, dv2=dv2, offsets=offsets, chunk_offsets=chunk_offsets, T=T, H=H, K=K, V=V, BT=BT, BC=BC, BK=BK, BV=BV, HEAD_FIRST=head_first ) return dh, dh0, dv2