from __future__ import annotations import math from typing import TYPE_CHECKING, Dict, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from fla.modules import FusedRMSNormSwishGate, RMSNorm, ShortConvolution from fla.ops.delta_rule import chunk_delta_rule from fla.ops.gated_delta_rule import chunk_gated_delta_rule if TYPE_CHECKING: from transformers.processing_utils import Unpack from fla.models.utils import Cache def elu_p1(x): return (F.elu(x, 1.0, False) + 1.0).to(x) def sum_norm(x): return (x / x.sum(-1, keepdim=True)).to(x) def interleave_multiple_sequences(*sequences): """ Interleave multiple sequences together. For example, with sequences [A1, A2], [B1, B2], [C1, C2], returns [A1, B1, C1, A2, B2, C2] """ if isinstance(sequences[0], (list, tuple)): sequences = sequences[0] if len(sequences) == 1: return sequences[0] # All sequences should have the same shape assert all(s.shape == sequences[0].shape for s in sequences) # Get the original shape batch_size, seq_len, *rest = sequences[0].shape # Stack sequences along a new dimension stacked = torch.stack(sequences, dim=2) # Reshape to interleave reshaped = stacked.view(batch_size, seq_len * len(sequences), *rest) return reshaped class GatedDeltaProduct(nn.Module): """ Generalized version of GatedDoubleDeltaNet that supports arbitrary number of householder transformations. """ def __init__( self, hidden_size: int = 2048, expand_v: float = 2, head_dim: int = 256, num_heads: int = 6, num_householder: int = 2, # New parameter for number of householder transformations mode: str = "chunk", use_gate: bool = True, use_forget_gate: bool = True, # when true Gated DeltaProduct, when false DeltaProduct use_short_conv: bool = True, conv_size: int = 4, conv_bias: bool = False, layer_idx: int | None = None, norm_eps: float = 1e-5, allow_neg_eigval: bool = False, # when true (Gated) DeltaProduct [-1, 1], when false (Gated) DeltaProduct [0, 1] **kwargs, ) -> None: super().__init__() self.mode = mode self.hidden_size = hidden_size self.expand_v = expand_v self.use_gate = use_gate self.use_short_conv = use_short_conv self.conv_size = conv_size self.conv_bias = conv_bias self.head_dim = head_dim self.num_heads = num_heads self.num_householder = num_householder self.allow_neg_eigval = allow_neg_eigval self.use_forget_gate = use_forget_gate self.key_dim = self.num_heads * self.head_dim self.value_dim = int(self.key_dim * self.expand_v) self.head_qk_dim = head_dim self.head_v_dim = int(head_dim * self.expand_v) self.layer_idx = layer_idx self.silu = nn.SiLU() assert mode in ["chunk", "fused_recurrent"], f"Not supported mode `{mode}`." # Create multiple projection layers for each householder transformation self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False) self.k_projs = nn.ModuleList( [ nn.Linear(hidden_size, self.key_dim, bias=False) for _ in range(num_householder) ] ) self.v_projs = nn.ModuleList( [ nn.Linear(hidden_size, self.value_dim, bias=False) for _ in range(num_householder) ] ) self.b_projs = nn.ModuleList( [ nn.Linear(hidden_size, self.num_heads, bias=False) for _ in range(num_householder) ] ) if use_short_conv: self.q_conv1ds = nn.ModuleList( [ ShortConvolution( hidden_size=self.key_dim, kernel_size=conv_size, activation="silu", ) for _ in range(num_householder) ] ) self.k_conv1ds = nn.ModuleList( [ ShortConvolution( hidden_size=self.key_dim, kernel_size=conv_size, activation="silu", ) for _ in range(num_householder) ] ) self.v_conv1ds = nn.ModuleList( [ ShortConvolution( hidden_size=self.value_dim, kernel_size=conv_size, activation="silu", ) for _ in range(num_householder) ] ) if self.use_forget_gate: self.a_proj = nn.Linear(hidden_size, self.num_heads, bias=False) A = torch.empty(self.num_heads, dtype=torch.float32).uniform_(0, 16) A_log = torch.log(A) self.A_log = nn.Parameter(A_log) self.A_log._no_weight_decay = True # Initialize dt parameters dt_min = 0.001 dt_max = 0.1 dt_init_floor = 1e-4 dt = torch.exp( torch.rand(self.num_heads) * (math.log(dt_max) - math.log(dt_min)) + math.log(dt_min) ) dt = torch.clamp(dt, min=dt_init_floor) inv_dt = dt + torch.log(-torch.expm1(-dt)) self.dt_bias = nn.Parameter(inv_dt) self.dt_bias._no_weight_decay = True if use_gate: self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False) self.o_norm = FusedRMSNormSwishGate(self.head_v_dim, eps=norm_eps) else: self.o_norm = RMSNorm(self.head_v_dim, eps=norm_eps) self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False) self.k_id = torch.nn.Identity() self.apply(self._initialize_weights) def _initialize_weights(self, module: nn.Module): if getattr(module, "_is_hf_initialized", False): return if isinstance(module, nn.Linear): nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5) if module.bias is not None: nn.init.zeros_(module.bias) module._is_hf_initialized = True def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Cache] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, **kwargs: Unpack[Dict], ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]: if attention_mask is not None: assert len(attention_mask.shape) == 2, ( "Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] " "for padding purposes (0 indicating padding)." ) mode = ( "chunk" # 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode ) if self.training: assert mode == "chunk", "Only chunk mode is supported in training." last_state = None if past_key_values is not None and len(past_key_values) > self.layer_idx: last_state = past_key_values[self.layer_idx] # Process each householder transformation ks, vs, betas = [], [], [] conv_states = [] for i in range(self.num_householder): if self.use_short_conv: conv_state_q, conv_state_k, conv_state_v = None, None, None if last_state is not None: conv_state_q, conv_state_k, conv_state_v = last_state["conv_state"][ i ] conv_mask = ( attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None ) k, conv_state_k = self.k_conv1ds[i]( x=self.k_projs[i](hidden_states), mask=conv_mask, cache=conv_state_k, output_final_state=use_cache, ) v, conv_state_v = self.v_conv1ds[i]( x=self.v_projs[i](hidden_states), mask=conv_mask, cache=conv_state_v, output_final_state=use_cache, ) conv_states.append((conv_state_q, conv_state_k, conv_state_v)) else: k = self.silu(self.k_projs[i](hidden_states)) v = self.silu(self.v_projs[i](hidden_states)) ks.append(k) vs.append(v) beta = self.b_projs[i]( hidden_states ).sigmoid() # bs, sequence_length, num_heads if attention_mask is not None: beta = beta.mul(attention_mask[:, -hidden_states.shape[1]:, None]) if self.allow_neg_eigval: beta = beta * 2 betas.append(beta) if self.use_short_conv: q, conv_state_q = self.q_conv1ds[0]( x=self.q_proj(hidden_states), mask=conv_mask, cache=conv_state_q, output_final_state=use_cache, ) else: q = self.silu(self.q_proj(hidden_states)) q = interleave_multiple_sequences( [torch.zeros_like(q)] * (self.num_householder - 1) + [q] ) # Interleave all sequences k = interleave_multiple_sequences(ks) v = interleave_multiple_sequences(vs) beta = interleave_multiple_sequences(betas) q, k, v = ( rearrange(x, "b t (h d) -> b t h d", h=self.num_heads) for x in (q, k, v) ) recurrent_state = ( last_state["recurrent_state"] if last_state is not None else None ) offsets = kwargs.get("offsets") if mode == "chunk": if self.use_forget_gate: g = -self.A_log.float().exp() * F.softplus( self.a_proj(hidden_states).float() + self.dt_bias ) if attention_mask is not None: g = g.mul(attention_mask[:, -g.shape[-2]:, None]) # Interleave g with zeros for non-first transformations g = interleave_multiple_sequences( [g] + [torch.zeros_like(g)] * (self.num_householder - 1) ) o, recurrent_state = chunk_gated_delta_rule( q=q, k=k, v=v, g=g, beta=beta, initial_state=recurrent_state, output_final_state=use_cache, cu_seqlens=offsets, head_first=False, use_qk_l2norm_in_kernel=True ) else: o, recurrent_state = chunk_delta_rule( q=q, k=k, v=v, beta=beta, initial_state=recurrent_state, output_final_state=use_cache, cu_seqlens=offsets, head_first=False, use_qk_l2norm_in_kernel=True ) else: raise NotImplementedError(f"Not supported mode `{mode}`.") # Take every nth element for n householder transformations o = o[:, self.num_householder - 1:: self.num_householder, :] if past_key_values is not None: past_key_values.update( recurrent_state=recurrent_state, conv_state=conv_states if self.use_short_conv else None, layer_idx=self.layer_idx, offset=q.shape[2], ) if self.use_gate: g = rearrange( self.g_proj(hidden_states), "... (h d) -> ... h d", h=self.num_heads, ) o = self.o_norm(o, g) else: o = self.o_norm(o) o = rearrange(o, "b t h d -> b t (h d)") o = self.o_proj(o) return o, None, past_key_values