|
|
|
|
|
|
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
import triton |
|
import triton.language as tl |
|
|
|
from fla.ops.utils.op import gather |
|
from fla.utils import is_gather_supported, use_cuda_graph |
|
|
|
|
|
@triton.heuristics({ |
|
'USE_OFFSETS': lambda args: args['offsets'] is not None |
|
}) |
|
@triton.autotune( |
|
configs=[ |
|
triton.Config({}, num_warps=num_warps) |
|
for num_warps in [1, 2, 4, 8, 16] |
|
], |
|
key=['BT'], |
|
use_cuda_graph=use_cuda_graph, |
|
) |
|
@triton.jit(do_not_specialize=['T']) |
|
def fwd_prepare_wy_repr_kernel_chunk32( |
|
A_ab, |
|
A_ab_inv, |
|
offsets, |
|
indices, |
|
T, |
|
H: tl.constexpr, |
|
BT: tl.constexpr, |
|
BC: tl.constexpr, |
|
USE_OFFSETS: tl.constexpr, |
|
HEAD_FIRST: tl.constexpr |
|
): |
|
i_t, i_bh = tl.program_id(0), tl.program_id(1) |
|
i_b, i_h = i_bh // H, i_bh % H |
|
if USE_OFFSETS: |
|
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) |
|
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) |
|
T = eos - bos |
|
else: |
|
bos, eos = i_b * T, i_b * T + T |
|
if HEAD_FIRST: |
|
p_Aab = tl.make_block_ptr(A_ab + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) |
|
p_Aab_inv = tl.make_block_ptr(A_ab_inv + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) |
|
else: |
|
p_Aab = tl.make_block_ptr(A_ab + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) |
|
p_Aab_inv = tl.make_block_ptr(A_ab_inv + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) |
|
b_A_ab = tl.load(p_Aab, boundary_check=(0, 1)) |
|
b_A_ab = tl.where(tl.arange(0, BT)[:, None] > tl.arange(0, BT)[None, :], b_A_ab, 0) |
|
for i in range(1, BT): |
|
mask = tl.arange(0, BT) == i |
|
b_a = tl.sum(tl.where(mask[:, None], b_A_ab, 0), 0) |
|
b_a = b_a + tl.sum(b_a[:, None] * b_A_ab, 0) * (tl.arange(0, BT) < i) |
|
b_A_ab = tl.where(mask[:, None], b_a, b_A_ab) |
|
b_A_ab += tl.arange(0, BT)[:, None] == tl.arange(0, BT)[None, :] |
|
tl.store(p_Aab_inv, b_A_ab.to(p_Aab_inv.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
|
|
@triton.heuristics({ |
|
'USE_OFFSETS': lambda args: args['offsets'] is not None |
|
}) |
|
@triton.autotune( |
|
configs=[ |
|
triton.Config({}, num_warps=num_warps, num_stages=num_stages) |
|
for num_warps in [2, 4, 8] |
|
for num_stages in [2, 3, 4] |
|
], |
|
key=['BC'], |
|
use_cuda_graph=use_cuda_graph, |
|
) |
|
@triton.jit(do_not_specialize=['T']) |
|
def fwd_prepare_wy_repr_kernel_chunk64( |
|
A_ab, |
|
A_ab_inv, |
|
offsets, |
|
indices, |
|
T, |
|
H: tl.constexpr, |
|
BT: tl.constexpr, |
|
BC: tl.constexpr, |
|
USE_OFFSETS: tl.constexpr, |
|
HEAD_FIRST: tl.constexpr, |
|
GATHER_SUPPORTED: tl.constexpr = is_gather_supported |
|
): |
|
i_t, i_bh = tl.program_id(0), tl.program_id(1) |
|
i_b, i_h = i_bh // H, i_bh % H |
|
if USE_OFFSETS: |
|
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) |
|
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) |
|
T = eos - bos |
|
else: |
|
bos, eos = i_b * T, i_b * T + T |
|
|
|
if HEAD_FIRST: |
|
|
|
p_A1 = tl.make_block_ptr(A_ab + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BC, BC), (1, 0)) |
|
p_A2 = tl.make_block_ptr(A_ab + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT + BC, BC), (BC, BC), (1, 0)) |
|
p_A3 = tl.make_block_ptr(A_ab + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT + BC, 0), (BC, BC), (1, 0)) |
|
p_A_inv1 = tl.make_block_ptr(A_ab_inv + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BC, BC), (1, 0)) |
|
p_A_inv2 = tl.make_block_ptr(A_ab_inv + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT + BC, BC), (BC, BC), (1, 0)) |
|
p_A_inv3 = tl.make_block_ptr(A_ab_inv + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT + BC, 0), (BC, BC), (1, 0)) |
|
p_A_inv4 = tl.make_block_ptr(A_ab_inv + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, BC), (BC, BC), (1, 0)) |
|
else: |
|
p_A1 = tl.make_block_ptr(A_ab + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BC, BC), (1, 0)) |
|
p_A2 = tl.make_block_ptr(A_ab + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT + BC, BC), (BC, BC), (1, 0)) |
|
p_A3 = tl.make_block_ptr(A_ab + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT + BC, 0), (BC, BC), (1, 0)) |
|
p_A_inv1 = tl.make_block_ptr(A_ab_inv + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BC, BC), (1, 0)) |
|
p_A_inv2 = tl.make_block_ptr(A_ab_inv + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT + BC, BC), (BC, BC), (1, 0)) |
|
p_A_inv3 = tl.make_block_ptr(A_ab_inv + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT + BC, 0), (BC, BC), (1, 0)) |
|
p_A_inv4 = tl.make_block_ptr(A_ab_inv + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, BC), (BC, BC), (1, 0)) |
|
|
|
b_A = tl.load(p_A1, boundary_check=(0, 1)) |
|
b_A2 = tl.load(p_A2, boundary_check=(0, 1)) |
|
b_A3 = tl.load(p_A3, boundary_check=(0, 1)) |
|
b_A = tl.where(tl.arange(0, BC)[:, None] > tl.arange(0, BC)[None, :], b_A, 0) |
|
b_A2 = tl.where(tl.arange(0, BC)[:, None] > tl.arange(0, BC)[None, :], b_A2, 0) |
|
|
|
for i in range(1, BC): |
|
if GATHER_SUPPORTED: |
|
row_idx = tl.full([1, BC], i, dtype=tl.int16) |
|
|
|
b_a = tl.sum(gather(b_A, row_idx, axis=0), 0) |
|
b_a2 = tl.sum(gather(b_A2, row_idx, axis=0), 0) |
|
else: |
|
mask = tl.arange(0, BC) == i |
|
b_a = tl.sum(tl.where(mask[:, None], b_A, 0), 0) |
|
b_a2 = tl.sum(tl.where(mask[:, None], b_A2, 0), 0) |
|
mask = tl.arange(0, BC) == i |
|
|
|
|
|
b_a = b_a + tl.sum(b_a[:, None] * b_A, 0) * (tl.arange(0, BC) < i) |
|
b_a2 = b_a2 + tl.sum(b_a2[:, None] * b_A2, 0) * (tl.arange(0, BC) < i) |
|
b_A = tl.where(mask[:, None], b_a, b_A) |
|
b_A2 = tl.where(mask[:, None], b_a2, b_A2) |
|
|
|
|
|
|
|
b_A += tl.arange(0, BC)[:, None] == tl.arange(0, BC)[None, :] |
|
b_A2 += tl.arange(0, BC)[:, None] == tl.arange(0, BC)[None, :] |
|
b_A3 = tl.dot(tl.dot(b_A2, b_A3), b_A) |
|
|
|
tl.store(p_A_inv1, b_A.to(p_A_inv1.dtype.element_ty, fp_downcast_rounding="rtne"), boundary_check=(0, 1)) |
|
tl.store(p_A_inv2, b_A2.to(p_A_inv2.dtype.element_ty, fp_downcast_rounding="rtne"), boundary_check=(0, 1)) |
|
tl.store(p_A_inv3, b_A3.to(p_A_inv3.dtype.element_ty, fp_downcast_rounding="rtne"), boundary_check=(0, 1)) |
|
|
|
tl.store(p_A_inv4, tl.zeros([BC, BC], dtype=tl.float32).to(p_A_inv4.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
|
|
@triton.heuristics({ |
|
'USE_OFFSETS': lambda args: args['offsets'] is not None |
|
}) |
|
@triton.autotune( |
|
configs=[ |
|
triton.Config({}, num_warps=num_warps, num_stages=num_stages) |
|
for num_warps in [2, 4, 8, 16, 32] |
|
for num_stages in [2, 3, 4] |
|
], |
|
key=['BT', 'BK', 'BV'], |
|
use_cuda_graph=use_cuda_graph, |
|
) |
|
@triton.jit(do_not_specialize=['T']) |
|
def fwd_wu_kernel( |
|
u, |
|
w, |
|
ag, |
|
v, |
|
A_ab_inv, |
|
A_ak, |
|
offsets, |
|
indices, |
|
T, |
|
H: tl.constexpr, |
|
K: tl.constexpr, |
|
V: tl.constexpr, |
|
BT: tl.constexpr, |
|
BK: tl.constexpr, |
|
BV: tl.constexpr, |
|
USE_OFFSETS: tl.constexpr, |
|
HEAD_FIRST: tl.constexpr, |
|
): |
|
i_t, i_bh = tl.program_id(0), tl.program_id(1) |
|
i_b, i_h = i_bh // H, i_bh % H |
|
if USE_OFFSETS: |
|
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) |
|
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) |
|
T = eos - bos |
|
else: |
|
bos, eos = i_b * T, i_b * T + T |
|
|
|
if HEAD_FIRST: |
|
p_A_ab_inv = tl.make_block_ptr(A_ab_inv + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) |
|
p_A_ak = tl.make_block_ptr(A_ak + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) |
|
else: |
|
p_A_ab_inv = tl.make_block_ptr(A_ab_inv + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) |
|
p_A_ak = tl.make_block_ptr(A_ak + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) |
|
b_Aab_inv = tl.load(p_A_ab_inv, boundary_check=(0, 1)) |
|
b_Aak = tl.load(p_A_ak, boundary_check=(0, 1)) |
|
o_s = tl.arange(0, BT) |
|
b_Aab_inv = tl.where(o_s[:, None] >= o_s[None, :], b_Aab_inv, 0) |
|
b_Aak = tl.where(o_s[:, None] > o_s[None, :], b_Aak, 0) |
|
|
|
b_Aak = tl.dot(b_Aab_inv, b_Aak) |
|
|
|
b_Aak = b_Aak.to(v.dtype.element_ty, fp_downcast_rounding="rtne") |
|
b_Aab_inv = b_Aab_inv.to(ag.dtype.element_ty, fp_downcast_rounding="rtne") |
|
|
|
for i_k in range(tl.cdiv(K, BK)): |
|
if HEAD_FIRST: |
|
p_ag = tl.make_block_ptr(ag + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_w = tl.make_block_ptr(w + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
else: |
|
p_ag = tl.make_block_ptr(ag + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_w = tl.make_block_ptr(w + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
b_ag = tl.load(p_ag, boundary_check=(0, 1)) |
|
b_w = tl.dot(b_Aab_inv, b_ag) |
|
tl.store(p_w, b_w.to(p_w.dtype.element_ty, fp_downcast_rounding="rtne"), boundary_check=(0, 1)) |
|
|
|
for i_v in range(tl.cdiv(V, BV)): |
|
if HEAD_FIRST: |
|
p_v = tl.make_block_ptr(v + i_bh * T * V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
p_u = tl.make_block_ptr(u + i_bh * T * V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
else: |
|
p_v = tl.make_block_ptr(v + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
p_u = tl.make_block_ptr(u + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
b_v = tl.load(p_v, boundary_check=(0, 1)) |
|
b_u = tl.dot(b_Aak, b_v) |
|
tl.store(p_u, b_u.to(p_u.dtype.element_ty, fp_downcast_rounding="rtne"), boundary_check=(0, 1)) |
|
|
|
|
|
def fwd_prepare_wy_repr( |
|
ag: torch.Tensor, |
|
v: torch.Tensor, |
|
A_ak: torch.Tensor, |
|
A_ab: torch.Tensor, |
|
offsets: Optional[torch.LongTensor], |
|
indices: Optional[torch.LongTensor], |
|
head_first: bool = True, |
|
chunk_size: int = 64 |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
if head_first: |
|
B, H, T, K = ag.shape |
|
else: |
|
B, T, H, K = ag.shape |
|
BT = min(chunk_size, max(triton.next_power_of_2(T), 16)) |
|
|
|
NT = triton.cdiv(T, BT) if offsets is None else len(indices) |
|
BC = min(BT, 32) |
|
fwd_fn = fwd_prepare_wy_repr_kernel_chunk64 if BT == 64 else fwd_prepare_wy_repr_kernel_chunk32 |
|
A_ab_inv = torch.empty_like(A_ab) |
|
fwd_fn[(NT, B * H)]( |
|
A_ab=A_ab, |
|
A_ab_inv=A_ab_inv, |
|
offsets=offsets, |
|
indices=indices, |
|
T=T, |
|
H=H, |
|
BT=BT, |
|
BC=BC, |
|
HEAD_FIRST=head_first |
|
) |
|
w, u = fwd_wu( |
|
ag=ag, |
|
v=v, |
|
A_ak=A_ak, |
|
A_ab_inv=A_ab_inv, |
|
offsets=offsets, |
|
indices=indices, |
|
head_first=head_first, |
|
chunk_size=BT |
|
) |
|
return w, u, A_ab_inv |
|
|
|
|
|
def fwd_wu( |
|
ag: torch.Tensor, |
|
v: torch.Tensor, |
|
A_ak: torch.Tensor, |
|
A_ab_inv: torch.Tensor, |
|
offsets: Optional[torch.LongTensor], |
|
indices: Optional[torch.LongTensor], |
|
head_first: bool, |
|
chunk_size: int |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
if head_first: |
|
B, H, T, K, V = *ag.shape, v.shape[-1] |
|
else: |
|
B, T, H, K, V = *ag.shape, v.shape[-1] |
|
BT = min(chunk_size, max(triton.next_power_of_2(T), 16)) |
|
|
|
NT = triton.cdiv(T, BT) if offsets is None else len(indices) |
|
BK = min(triton.next_power_of_2(K), 64) |
|
BV = min(triton.next_power_of_2(V), 64) |
|
|
|
u = torch.empty_like(v) |
|
w = torch.empty_like(ag) |
|
fwd_wu_kernel[(NT, B*H)]( |
|
ag=ag, |
|
v=v, |
|
A_ak=A_ak, |
|
A_ab_inv=A_ab_inv, |
|
w=w, |
|
u=u, |
|
offsets=offsets, |
|
indices=indices, |
|
T=T, |
|
H=H, |
|
K=K, |
|
V=V, |
|
BT=BT, |
|
BK=BK, |
|
BV=BV, |
|
HEAD_FIRST=head_first |
|
) |
|
return w, u |
|
|