zaydzuhri's picture
Add files using upload-large-folder tool
f72219a verified
raw
history blame
4.04 kB
# -*- coding: utf-8 -*-
import torch
from einops import rearrange
# S_t = S_t @ (I + alpha_t beta_t^T) + v_t k_t^T
# q, k, alpha, beta [B, H, L, D_K]
# v [B, H, L, D_V]
def dplr_recurrence(q, k, v, alpha, beta, gk, initial_state=None, output_final_state=True):
orig_dtype = q.dtype
b, h, l, d_k = q.shape
q, k, v, beta, gk = map(lambda x: x.float(), [q, k, v, beta, gk])
d_v = v.shape[-1]
o = torch.zeros_like(v)
S = torch.zeros(b, h, d_k, d_v).to(v)
q = q * (d_k ** -0.5)
if initial_state is not None:
S += initial_state
for i in range(l):
_k = k[:, :, i]
_q = q[:, :, i]
_v = v[:, :, i]
_alpha = alpha[:, :, i].clone()
_beta = beta[:, :, i].clone()
_kv = _k[..., None] * _v[..., None, :] + (S.clone() * _alpha[..., None]).sum(-2, keepdim=True) * _beta[..., None]
S = S.clone() * gk[:, :, i].exp()[..., None] + _kv
o[:, :, i] = torch.einsum('bhd,bhdm->bhm', _q, S)
S = None if output_final_state is False else S
return o.to(orig_dtype), S
def dplr_chunkwise(q, k, v, alpha, beta, gk, initial_state=None, output_final_state=True, chunk_size=32):
b, h, l, d_k = q.shape
d_v = v.shape[-1]
q = q * (d_k ** -0.5)
v = v
assert l % chunk_size == 0
S = k.new_zeros(b, h, d_k, d_v).to(q)
if initial_state is not None:
S += initial_state
# note that diagonal is masked.
mask = torch.triu(torch.ones(chunk_size, chunk_size, dtype=torch.bool, device=q.device), diagonal=0)
q, k, v, alpha, beta, gk = map(lambda x: rearrange(x, 'b h (n c) d -> b h n c d',
c=chunk_size).float(), [q, k, v, alpha, beta, gk])
gk_cumsum = gk.cumsum(-2)
# v2 = (alpha @ k.transpose(-1, -2)).masked_fill_(mask, 0) @ v
A_ab = torch.zeros(b, h, l // chunk_size, chunk_size, chunk_size).to(q.device)
A_qk = torch.zeros(b, h, l // chunk_size, chunk_size, chunk_size).to(q.device)
A_ak = torch.zeros(b, h, l // chunk_size, chunk_size, chunk_size).to(q.device)
A_qb = torch.zeros(b, h, l // chunk_size, chunk_size, chunk_size).to(q.device)
for i in range(chunk_size):
alpha_i = alpha[:, :, :, i, None]
q_i = q[:, :, :, i, None]
gk_i = gk_cumsum[:, :, :, i, None]
mask = (torch.arange(chunk_size) <= i).to(q.device)
attn_i = (gk_i - gk_cumsum).masked_fill(~mask.unsqueeze(-1), float('-inf')).exp()
A_qk[:, :, :, i, :] = (q_i * k * attn_i).sum(-1).clone()
A_qb[:, :, :, i, :] = (q_i * beta * attn_i).sum(-1).clone()
mask = (torch.arange(chunk_size) < i).to(q.device)
# shift by one.
attn_i = (gk_i - gk[:, :, :, i, None] - gk_cumsum).masked_fill(~mask.unsqueeze(-1), float('-inf')).exp()
A_ab[:, :, :, i, :] = (alpha_i * beta * attn_i).sum(-1).clone()
A_ak[:, :, :, i, :] = (alpha_i * k * attn_i).sum(-1).clone()
A_ab = A_ab
for i in range(1, chunk_size):
A_ab[..., i, :i] = A_ab[..., i, :i].clone() + (A_ab[..., i, :, None].clone() * A_ab[..., :, :i].clone()).sum(-2)
A_ab = A_ab + torch.eye(chunk_size, dtype=torch.float, device=q.device)
u = A_ab @ (A_ak @ v)
w = A_ab @ ((gk_cumsum-gk).exp() * alpha)
o = torch.zeros_like(v)
mask = torch.triu(torch.ones(chunk_size, chunk_size, dtype=torch.bool, device=q.device), diagonal=1)
for i in range(0, l // chunk_size):
q_i, k_i, v_i, u_i, w_i, beta_i = q[:, :, i], k[:, :, i], v[:, :, i], u[:, :, i], w[:, :, i], beta[:, :, i]
v2_i = u_i + w_i @ S
o_1 = A_qk[:, :, i] @ v_i
o_2 = A_qb[:, :, i] @ v2_i
o_3 = (q_i * gk_cumsum[:, :, i].exp()) @ S
o[:, :, i] = o_1 + o_2 + o_3
decay = (gk_cumsum[:, :, i, -1, None] - gk_cumsum[:, :, i]).exp()
S = S*gk_cumsum[:, :, i, -1, :, None].exp() + (k_i * decay).transpose(-1, -2) @ v_i + \
(beta_i * decay).transpose(-1, -2) @ v2_i
S = None if output_final_state is False else S
return rearrange(o, 'b h n c d -> b h (n c) d'), S