zaydzuhri's picture
Add files using upload-large-folder tool
f72219a verified
raw
history blame
9.75 kB
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
from typing import Optional, Tuple
import torch
import triton
import triton.language as tl
from fla.ops.utils.op import exp
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, input_guard, use_cuda_graph
@triton.heuristics({
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
'USE_OFFSETS': lambda args: args['offsets'] is not None
})
@triton.autotune(
configs=[
triton.Config({'BV': BV}, num_warps=num_warps, num_stages=num_stages)
for BV in [16, 32, 64]
for num_warps in [2, 4, 8, 16]
for num_stages in [2, 3, 4]
],
key=['BK'],
use_cuda_graph=use_cuda_graph,
)
@triton.jit(do_not_specialize=['T'])
def fused_recurrent_dplr_delta_rule_fwd_kernel(
q,
k,
v,
a,
b,
gk,
o,
h0,
ht,
offsets,
scale,
T,
B: tl.constexpr,
H: tl.constexpr,
K: tl.constexpr,
V: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
REVERSE: tl.constexpr,
USE_INITIAL_STATE: tl.constexpr,
STORE_FINAL_STATE: tl.constexpr,
USE_OFFSETS: tl.constexpr,
HEAD_FIRST: tl.constexpr
):
i_v, i_nh = tl.program_id(0).to(tl.int64), tl.program_id(1).to(tl.int64)
i_n, i_h = i_nh // H, i_nh % H
if USE_OFFSETS:
bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64)
T = eos - bos
else:
bos, eos = i_n * T, i_n * T + T
o_k = tl.arange(0, BK)
o_v = i_v * BV + tl.arange(0, BV)
if HEAD_FIRST:
p_q = q + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k
p_k = k + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k
p_a = a + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k
p_b = b + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k
p_gk = gk + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k
p_v = v + i_nh * T*V + ((T-1) * V if REVERSE else 0) + o_v
p_o = o + i_nh * T*V + ((T-1) * V if REVERSE else 0) + o_v
else:
p_q = q + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k
p_k = k + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k
p_a = a + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k
p_b = b + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k
p_gk = gk + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k
p_v = v + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + o_v
p_o = o + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + o_v
mask_k = o_k < K
mask_v = o_v < V
mask_h = mask_k[None, :] & mask_v[:, None]
b_h = tl.zeros([BV, BK], dtype=tl.float32)
if USE_INITIAL_STATE:
p_h0 = h0 + i_nh * K*V + o_k[None, :] * V + o_v[:, None]
b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32)
for _ in range(0, T):
b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32) * scale
b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32)
b_a = tl.load(p_a, mask=mask_k, other=0).to(tl.float32)
b_b = tl.load(p_b, mask=mask_k, other=0).to(tl.float32)
b_gk = tl.load(p_gk, mask=mask_k, other=0).to(tl.float32)
b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32)
tmp = tl.sum(b_h * b_a[None, :], axis=1)
b_h = exp(b_gk)[None, :] * b_h + (tmp[:, None] * b_b[None, :] + b_k[None, :] * b_v[:, None])
b_o = tl.sum(b_h * b_q[None, :], axis=1)
tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_v)
p_q += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
p_k += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
p_a += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
p_b += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
p_gk += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
p_v += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
p_o += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
if STORE_FINAL_STATE:
p_ht = ht + i_nh * K*V + o_k[None, :] * V + o_v[:, None]
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask_h)
def fused_recurrent_dplr_delta_rule_fwd(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
a: torch.Tensor,
b: torch.Tensor,
gk: torch.Tensor,
scale: Optional[float] = 1.0,
initial_state: Optional[torch.Tensor] = None,
output_final_state: bool = False,
reverse: bool = False,
offsets: Optional[torch.LongTensor] = None,
head_first: bool = True
):
if head_first:
B, H, T, K, V = *k.shape, v.shape[-1]
else:
B, T, H, K, V = *k.shape, v.shape[-1]
N = B if offsets is None else len(offsets) - 1
BK = triton.next_power_of_2(K)
h0 = initial_state
if output_final_state:
ht = q.new_empty(N, H, K, V, dtype=torch.float32)
else:
ht = None
o = torch.empty_like(v)
def grid(meta): return (triton.cdiv(V, meta['BV']), N * H)
fused_recurrent_dplr_delta_rule_fwd_kernel[grid](
q,
k,
v,
a,
b,
gk,
o,
h0,
ht,
offsets,
scale,
T=T,
B=B,
H=H,
K=K,
V=V,
BK=BK,
REVERSE=reverse,
HEAD_FIRST=head_first
)
return o, ht
class FusedRecurrentDPLRDeltaRuleFunction(torch.autograd.Function):
@staticmethod
@input_guard
@autocast_custom_fwd
def forward(
ctx,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
a: torch.Tensor,
b: torch.Tensor,
gk: torch.Tensor,
scale: Optional[float] = 1.0,
initial_state: Optional[torch.Tensor] = None,
output_final_state: bool = False,
reverse: bool = False,
offsets: Optional[torch.LongTensor] = None,
head_first: bool = False
):
o, ht = fused_recurrent_dplr_delta_rule_fwd(
q=q,
k=k,
v=v,
a=a,
b=b,
gk=gk,
scale=scale,
initial_state=initial_state,
output_final_state=output_final_state,
reverse=reverse,
offsets=offsets,
head_first=head_first
)
return o, ht
@staticmethod
@input_guard
@autocast_custom_bwd
def backward(ctx, do, dht):
raise NotImplementedError(
"Backward pass for fused_recurrent_dplr_delta_rule is not implemented and will not be supported. "
"This kernel is only for inference. "
"For training, please use `chunk_dplr_delta_rule`."
)
def fused_recurrent_dplr_delta_rule(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
a: torch.Tensor,
b: torch.Tensor,
gk: torch.Tensor,
scale: Optional[float] = 1.0,
initial_state: Optional[torch.Tensor] = None,
output_final_state: bool = False,
reverse: bool = False,
cu_seqlens: Optional[torch.Tensor] = None,
head_first: bool = False
) -> Tuple[torch.Tensor, torch.Tensor]:
r"""
This function computes the recurrence S_t = S_t @ (I + a_t b_t^T) + v_t k_t^T in a recurrent manner.
Args:
q (torch.Tensor):
queries of shape `[B, H, T, K]`
k (torch.Tensor):
keys of shape `[B, H, T, K]`
v (torch.Tensor):
values of shape `[B, H, T, V]`
a (torch.Tensor):
as of shape `[B, H, T, K]`
b (torch.Tensor):
bs of shape `[B, H, T, K]`
gk (torch.Tensor):
gk of shape `[B, H, T, K]`
scale (Optional[int]):
Scale factor for the RetNet attention scores.
If None, it will default to `1 / sqrt(K)`. Default: `1.0`.
initial_state (Optional[torch.Tensor]):
Initial state of shape `[B, H, K, V]`. Default: `None`.
output_final_state (Optional[bool]):
Whether to output the final state of shape `[B, H, K, V]`. Default: `False`.
reverse (Optional[bool]):
If `True`, process the state passing in reverse order. Default: `False`.
cu_seqlens (Optional[torch.Tensor]):
Cumulative sequence lengths of shape `[N + 1]` used for variable-length training,
consistent with the FlashAttention API.
head_first (Optional[bool]):
Whether the inputs are in the head-first format, which is not supported for variable-length inputs.
Default: `False`.
"""
if cu_seqlens is not None:
if q.shape[0] != 1:
raise ValueError(f"The batch size is expected to be 1 rather than {q.shape[0]} when using `cu_seqlens`."
f"Please flatten variable-length inputs before processing.")
if head_first:
raise RuntimeError("Sequences with variable lengths are not supported for head-first mode")
if initial_state is not None and initial_state.shape[0] != len(cu_seqlens) - 1:
raise ValueError(f"The number of initial states is expected to be equal to the number of input sequences, "
f"i.e., {len(cu_seqlens) - 1} rather than {initial_state.shape[0]}.")
if scale is None:
scale = q.shape[-1] ** -0.5
else:
assert scale > 0, "scale must be positive"
o, final_state = FusedRecurrentDPLRDeltaRuleFunction.apply(
q,
k,
v,
a,
b,
gk,
scale,
initial_state,
output_final_state,
reverse,
cu_seqlens,
head_first
)
return o, final_state