|
|
|
|
|
|
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
import triton |
|
import triton.language as tl |
|
|
|
from fla.ops.utils.op import exp |
|
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, input_guard, use_cuda_graph |
|
|
|
|
|
@triton.heuristics({ |
|
'USE_INITIAL_STATE': lambda args: args['h0'] is not None, |
|
'STORE_FINAL_STATE': lambda args: args['ht'] is not None, |
|
'USE_OFFSETS': lambda args: args['offsets'] is not None |
|
}) |
|
@triton.autotune( |
|
configs=[ |
|
triton.Config({'BV': BV}, num_warps=num_warps, num_stages=num_stages) |
|
for BV in [16, 32, 64] |
|
for num_warps in [2, 4, 8, 16] |
|
for num_stages in [2, 3, 4] |
|
], |
|
key=['BK'], |
|
use_cuda_graph=use_cuda_graph, |
|
) |
|
@triton.jit(do_not_specialize=['T']) |
|
def fused_recurrent_dplr_delta_rule_fwd_kernel( |
|
q, |
|
k, |
|
v, |
|
a, |
|
b, |
|
gk, |
|
o, |
|
h0, |
|
ht, |
|
offsets, |
|
scale, |
|
T, |
|
B: tl.constexpr, |
|
H: tl.constexpr, |
|
K: tl.constexpr, |
|
V: tl.constexpr, |
|
BK: tl.constexpr, |
|
BV: tl.constexpr, |
|
REVERSE: tl.constexpr, |
|
USE_INITIAL_STATE: tl.constexpr, |
|
STORE_FINAL_STATE: tl.constexpr, |
|
USE_OFFSETS: tl.constexpr, |
|
HEAD_FIRST: tl.constexpr |
|
): |
|
i_v, i_nh = tl.program_id(0).to(tl.int64), tl.program_id(1).to(tl.int64) |
|
i_n, i_h = i_nh // H, i_nh % H |
|
|
|
if USE_OFFSETS: |
|
bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64) |
|
T = eos - bos |
|
else: |
|
bos, eos = i_n * T, i_n * T + T |
|
|
|
o_k = tl.arange(0, BK) |
|
o_v = i_v * BV + tl.arange(0, BV) |
|
if HEAD_FIRST: |
|
p_q = q + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k |
|
p_k = k + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k |
|
p_a = a + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k |
|
p_b = b + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k |
|
p_gk = gk + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k |
|
p_v = v + i_nh * T*V + ((T-1) * V if REVERSE else 0) + o_v |
|
p_o = o + i_nh * T*V + ((T-1) * V if REVERSE else 0) + o_v |
|
|
|
else: |
|
p_q = q + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k |
|
p_k = k + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k |
|
p_a = a + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k |
|
p_b = b + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k |
|
p_gk = gk + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k |
|
p_v = v + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + o_v |
|
p_o = o + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + o_v |
|
|
|
mask_k = o_k < K |
|
mask_v = o_v < V |
|
mask_h = mask_k[None, :] & mask_v[:, None] |
|
b_h = tl.zeros([BV, BK], dtype=tl.float32) |
|
|
|
if USE_INITIAL_STATE: |
|
p_h0 = h0 + i_nh * K*V + o_k[None, :] * V + o_v[:, None] |
|
b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32) |
|
|
|
for _ in range(0, T): |
|
b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32) * scale |
|
b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32) |
|
b_a = tl.load(p_a, mask=mask_k, other=0).to(tl.float32) |
|
b_b = tl.load(p_b, mask=mask_k, other=0).to(tl.float32) |
|
b_gk = tl.load(p_gk, mask=mask_k, other=0).to(tl.float32) |
|
b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32) |
|
|
|
tmp = tl.sum(b_h * b_a[None, :], axis=1) |
|
b_h = exp(b_gk)[None, :] * b_h + (tmp[:, None] * b_b[None, :] + b_k[None, :] * b_v[:, None]) |
|
b_o = tl.sum(b_h * b_q[None, :], axis=1) |
|
|
|
tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_v) |
|
p_q += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K |
|
p_k += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K |
|
p_a += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K |
|
p_b += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K |
|
p_gk += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K |
|
p_v += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V |
|
p_o += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V |
|
|
|
if STORE_FINAL_STATE: |
|
p_ht = ht + i_nh * K*V + o_k[None, :] * V + o_v[:, None] |
|
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask_h) |
|
|
|
|
|
def fused_recurrent_dplr_delta_rule_fwd( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
a: torch.Tensor, |
|
b: torch.Tensor, |
|
gk: torch.Tensor, |
|
scale: Optional[float] = 1.0, |
|
initial_state: Optional[torch.Tensor] = None, |
|
output_final_state: bool = False, |
|
reverse: bool = False, |
|
offsets: Optional[torch.LongTensor] = None, |
|
head_first: bool = True |
|
): |
|
if head_first: |
|
B, H, T, K, V = *k.shape, v.shape[-1] |
|
else: |
|
B, T, H, K, V = *k.shape, v.shape[-1] |
|
N = B if offsets is None else len(offsets) - 1 |
|
BK = triton.next_power_of_2(K) |
|
|
|
h0 = initial_state |
|
if output_final_state: |
|
ht = q.new_empty(N, H, K, V, dtype=torch.float32) |
|
else: |
|
ht = None |
|
o = torch.empty_like(v) |
|
|
|
def grid(meta): return (triton.cdiv(V, meta['BV']), N * H) |
|
fused_recurrent_dplr_delta_rule_fwd_kernel[grid]( |
|
q, |
|
k, |
|
v, |
|
a, |
|
b, |
|
gk, |
|
o, |
|
h0, |
|
ht, |
|
offsets, |
|
scale, |
|
T=T, |
|
B=B, |
|
H=H, |
|
K=K, |
|
V=V, |
|
BK=BK, |
|
REVERSE=reverse, |
|
HEAD_FIRST=head_first |
|
) |
|
return o, ht |
|
|
|
|
|
class FusedRecurrentDPLRDeltaRuleFunction(torch.autograd.Function): |
|
|
|
@staticmethod |
|
@input_guard |
|
@autocast_custom_fwd |
|
def forward( |
|
ctx, |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
a: torch.Tensor, |
|
b: torch.Tensor, |
|
gk: torch.Tensor, |
|
scale: Optional[float] = 1.0, |
|
initial_state: Optional[torch.Tensor] = None, |
|
output_final_state: bool = False, |
|
reverse: bool = False, |
|
offsets: Optional[torch.LongTensor] = None, |
|
head_first: bool = False |
|
): |
|
o, ht = fused_recurrent_dplr_delta_rule_fwd( |
|
q=q, |
|
k=k, |
|
v=v, |
|
a=a, |
|
b=b, |
|
gk=gk, |
|
scale=scale, |
|
initial_state=initial_state, |
|
output_final_state=output_final_state, |
|
reverse=reverse, |
|
offsets=offsets, |
|
head_first=head_first |
|
) |
|
return o, ht |
|
|
|
@staticmethod |
|
@input_guard |
|
@autocast_custom_bwd |
|
def backward(ctx, do, dht): |
|
raise NotImplementedError( |
|
"Backward pass for fused_recurrent_dplr_delta_rule is not implemented and will not be supported. " |
|
"This kernel is only for inference. " |
|
"For training, please use `chunk_dplr_delta_rule`." |
|
) |
|
|
|
|
|
def fused_recurrent_dplr_delta_rule( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
a: torch.Tensor, |
|
b: torch.Tensor, |
|
gk: torch.Tensor, |
|
scale: Optional[float] = 1.0, |
|
initial_state: Optional[torch.Tensor] = None, |
|
output_final_state: bool = False, |
|
reverse: bool = False, |
|
cu_seqlens: Optional[torch.Tensor] = None, |
|
head_first: bool = False |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
r""" |
|
This function computes the recurrence S_t = S_t @ (I + a_t b_t^T) + v_t k_t^T in a recurrent manner. |
|
|
|
Args: |
|
q (torch.Tensor): |
|
queries of shape `[B, H, T, K]` |
|
k (torch.Tensor): |
|
keys of shape `[B, H, T, K]` |
|
v (torch.Tensor): |
|
values of shape `[B, H, T, V]` |
|
a (torch.Tensor): |
|
as of shape `[B, H, T, K]` |
|
b (torch.Tensor): |
|
bs of shape `[B, H, T, K]` |
|
gk (torch.Tensor): |
|
gk of shape `[B, H, T, K]` |
|
scale (Optional[int]): |
|
Scale factor for the RetNet attention scores. |
|
If None, it will default to `1 / sqrt(K)`. Default: `1.0`. |
|
initial_state (Optional[torch.Tensor]): |
|
Initial state of shape `[B, H, K, V]`. Default: `None`. |
|
output_final_state (Optional[bool]): |
|
Whether to output the final state of shape `[B, H, K, V]`. Default: `False`. |
|
reverse (Optional[bool]): |
|
If `True`, process the state passing in reverse order. Default: `False`. |
|
cu_seqlens (Optional[torch.Tensor]): |
|
Cumulative sequence lengths of shape `[N + 1]` used for variable-length training, |
|
consistent with the FlashAttention API. |
|
head_first (Optional[bool]): |
|
Whether the inputs are in the head-first format, which is not supported for variable-length inputs. |
|
Default: `False`. |
|
""" |
|
if cu_seqlens is not None: |
|
if q.shape[0] != 1: |
|
raise ValueError(f"The batch size is expected to be 1 rather than {q.shape[0]} when using `cu_seqlens`." |
|
f"Please flatten variable-length inputs before processing.") |
|
if head_first: |
|
raise RuntimeError("Sequences with variable lengths are not supported for head-first mode") |
|
if initial_state is not None and initial_state.shape[0] != len(cu_seqlens) - 1: |
|
raise ValueError(f"The number of initial states is expected to be equal to the number of input sequences, " |
|
f"i.e., {len(cu_seqlens) - 1} rather than {initial_state.shape[0]}.") |
|
if scale is None: |
|
scale = q.shape[-1] ** -0.5 |
|
else: |
|
assert scale > 0, "scale must be positive" |
|
o, final_state = FusedRecurrentDPLRDeltaRuleFunction.apply( |
|
q, |
|
k, |
|
v, |
|
a, |
|
b, |
|
gk, |
|
scale, |
|
initial_state, |
|
output_final_state, |
|
reverse, |
|
cu_seqlens, |
|
head_first |
|
) |
|
return o, final_state |
|
|