zaydzuhri's picture
Add files using upload-large-folder tool
f72219a verified
raw
history blame
4.9 kB
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
from typing import Optional
import torch
import triton
import triton.language as tl
from fla.utils import check_shared_mem, use_cuda_graph
BK_LIST = [32, 64, 128] if check_shared_mem() else [16, 32]
@triton.heuristics({
'USE_OFFSETS': lambda args: args['offsets'] is not None,
})
@triton.autotune(
configs=[
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
for BK in BK_LIST
for BV in BK_LIST
for num_warps in [2, 4, 8, 16, 32]
for num_stages in [2, 3, 4]
],
key=['BT'],
use_cuda_graph=use_cuda_graph,
)
@triton.jit(do_not_specialize=['T'])
def chunk_dplr_fwd_kernel_o(
qg,
v,
v_new,
A_qk,
A_qb,
h,
o,
offsets,
indices,
T,
H: tl.constexpr,
K: tl.constexpr,
V: tl.constexpr,
BT: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
USE_OFFSETS: tl.constexpr,
HEAD_FIRST: tl.constexpr,
):
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_h = i_bh // H, i_bh % H
if USE_OFFSETS:
i_tg = i_t
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
T = eos - bos
NT = tl.cdiv(T, BT)
else:
NT = tl.cdiv(T, BT)
i_tg = i_b * NT + i_t
bos, eos = i_b * T, i_b * T + T
b_o = tl.zeros([BT, BV], dtype=tl.float32)
for i_k in range(tl.cdiv(K, BK)):
if HEAD_FIRST:
p_qg = tl.make_block_ptr(qg + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_h = tl.make_block_ptr(h + (i_bh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
else:
p_qg = tl.make_block_ptr(qg + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_h = tl.make_block_ptr(h + (i_tg * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
b_qg = tl.load(p_qg, boundary_check=(0, 1))
b_h = tl.load(p_h, boundary_check=(0, 1))
b_o += tl.dot(b_qg, b_h)
if HEAD_FIRST:
p_Aqk = tl.make_block_ptr(A_qk + i_bh * T*BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
p_Aqb = tl.make_block_ptr(A_qb + i_bh * T*BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_v_new = tl.make_block_ptr(v_new + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_o = tl.make_block_ptr(o + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
else:
p_Aqk = tl.make_block_ptr(A_qk + (bos * H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
p_Aqb = tl.make_block_ptr(A_qb + (bos * H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_v_new = tl.make_block_ptr(v_new + (bos * H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_o = tl.make_block_ptr(o + (bos * H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
m_s = tl.arange(0, BT)[:, None] >= tl.arange(0, BT)[None, :]
b_Aqk = tl.load(p_Aqk, boundary_check=(0, 1))
b_Aqb = tl.load(p_Aqb, boundary_check=(0, 1))
b_Aqk = tl.where(m_s, b_Aqk, 0)
b_Aqb = tl.where(m_s, b_Aqb, 0)
b_v = tl.load(p_v, boundary_check=(0, 1))
b_v_new = tl.load(p_v_new, boundary_check=(0, 1))
b_o = b_o + tl.dot(b_Aqk.to(b_v.dtype), b_v) + tl.dot(b_Aqb.to(b_v_new.dtype), b_v_new)
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
def chunk_dplr_fwd_o(
qg: torch.Tensor,
v: torch.Tensor,
v_new: torch.Tensor,
A_qk: torch.Tensor,
A_qb: torch.Tensor,
h: torch.Tensor,
offsets: Optional[torch.LongTensor] = None,
indices: Optional[torch.LongTensor] = None,
head_first: bool = True,
chunk_size: int = 64
) -> torch.Tensor:
if head_first:
B, H, T, K, V = *qg.shape, v.shape[-1]
else:
B, T, H, K, V = *qg.shape, v.shape[-1]
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
o = torch.empty_like(v)
def grid(meta): return (triton.cdiv(V, meta['BV']), NT, B * H)
chunk_dplr_fwd_kernel_o[grid](
qg=qg,
v=v,
v_new=v_new,
A_qk=A_qk,
A_qb=A_qb,
h=h,
o=o,
offsets=offsets,
indices=indices,
T=T,
H=H,
K=K,
V=V,
BT=BT,
HEAD_FIRST=head_first
)
return o