|
|
|
|
|
|
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
import triton |
|
import triton.language as tl |
|
|
|
from fla.ops.common.utils import prepare_chunk_offsets |
|
from fla.ops.utils.op import exp |
|
from fla.utils import check_shared_mem, use_cuda_graph |
|
|
|
|
|
@triton.heuristics({ |
|
'USE_INITIAL_STATE': lambda args: args['h0'] is not None, |
|
'STORE_FINAL_STATE': lambda args: args['ht'] is not None, |
|
'USE_OFFSETS': lambda args: args['offsets'] is not None, |
|
}) |
|
@triton.autotune( |
|
configs=[ |
|
triton.Config({}, num_warps=num_warps, num_stages=num_stages) |
|
for num_warps in [2, 4, 8, 16, 32] |
|
for num_stages in [2, 3, 4] |
|
], |
|
key=['BT', 'BK', 'BV'], |
|
use_cuda_graph=use_cuda_graph, |
|
) |
|
@triton.jit(do_not_specialize=['T']) |
|
def chunk_dplr_fwd_kernel_h( |
|
kg, |
|
v, |
|
w, |
|
bg, |
|
u, |
|
v_new, |
|
gk, |
|
h, |
|
h0, |
|
ht, |
|
offsets, |
|
chunk_offsets, |
|
T, |
|
H: tl.constexpr, |
|
K: tl.constexpr, |
|
V: tl.constexpr, |
|
BT: tl.constexpr, |
|
BC: tl.constexpr, |
|
BK: tl.constexpr, |
|
BV: tl.constexpr, |
|
NT: tl.constexpr, |
|
USE_INITIAL_STATE: tl.constexpr, |
|
STORE_FINAL_STATE: tl.constexpr, |
|
USE_OFFSETS: tl.constexpr, |
|
HEAD_FIRST: tl.constexpr, |
|
): |
|
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2) |
|
i_n, i_h = i_nh // H, i_nh % H |
|
if USE_OFFSETS: |
|
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) |
|
T = eos - bos |
|
NT = tl.cdiv(T, BT) |
|
boh = tl.load(chunk_offsets + i_n).to(tl.int32) |
|
else: |
|
bos, eos = i_n * T, i_n * T + T |
|
NT = tl.cdiv(T, BT) |
|
boh = i_n * NT |
|
|
|
|
|
b_h = tl.zeros([BK, BV], dtype=tl.float32) |
|
if USE_INITIAL_STATE: |
|
p_h0 = tl.make_block_ptr(h0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) |
|
b_h = tl.load(p_h0, boundary_check=(0, 1)).to(tl.float32) |
|
|
|
for i_t in range(NT): |
|
if HEAD_FIRST: |
|
p_h = tl.make_block_ptr(h + (i_nh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) |
|
else: |
|
p_h = tl.make_block_ptr(h + ((boh + i_t) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) |
|
tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
b_hc = tl.zeros([BK, BV], dtype=tl.float32) |
|
|
|
for i_c in range(tl.cdiv(min(BT, T - i_t * BT), BC)): |
|
if HEAD_FIRST: |
|
p_kg = tl.make_block_ptr(kg + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1)) |
|
p_bg = tl.make_block_ptr(bg + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1)) |
|
p_w = tl.make_block_ptr(w + i_nh * T*K, (T, K), (K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0)) |
|
p_v = tl.make_block_ptr(v + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) |
|
p_u = tl.make_block_ptr(u + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) |
|
p_v_new = tl.make_block_ptr(v_new+i_nh*T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) |
|
else: |
|
p_kg = tl.make_block_ptr(kg+(bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1)) |
|
p_bg = tl.make_block_ptr(bg+(bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1)) |
|
p_w = tl.make_block_ptr(w+(bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0)) |
|
p_v = tl.make_block_ptr(v+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) |
|
p_u = tl.make_block_ptr(u+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) |
|
p_v_new = tl.make_block_ptr(v_new+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT+i_c*BC, i_v * BV), (BC, BV), (1, 0)) |
|
|
|
b_kg = tl.load(p_kg, boundary_check=(0, 1)) |
|
b_v = tl.load(p_v, boundary_check=(0, 1)) |
|
b_w = tl.load(p_w, boundary_check=(0, 1)) |
|
b_bg = tl.load(p_bg, boundary_check=(0, 1)) |
|
b_v2 = tl.dot(b_w, b_h.to(b_w.dtype)) + tl.load(p_u, boundary_check=(0, 1)) |
|
b_hc += tl.dot(b_kg, b_v) |
|
b_hc += tl.dot(b_bg.to(b_hc.dtype), b_v2) |
|
tl.store(p_v_new, b_v2.to(p_v_new.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
last_idx = min((i_t + 1) * BT, T) - 1 |
|
if HEAD_FIRST: |
|
b_g_last = tl.load(gk + i_nh * T * K + last_idx * K + tl.arange(0, BK), mask=tl.arange(0, BK) < K).to(tl.float32) |
|
else: |
|
b_g_last = tl.load(gk + (bos + last_idx) * H * K + i_h * K + |
|
tl.arange(0, BK), mask=tl.arange(0, BK) < K).to(tl.float32) |
|
b_h *= exp(b_g_last[:, None]) |
|
b_h += b_hc |
|
|
|
if STORE_FINAL_STATE: |
|
p_ht = tl.make_block_ptr(ht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) |
|
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty, fp_downcast_rounding="rtne"), boundary_check=(0, 1)) |
|
|
|
|
|
def chunk_dplr_fwd_h( |
|
kg: torch.Tensor, |
|
v: torch.Tensor, |
|
w: torch.Tensor, |
|
u: torch.Tensor, |
|
bg: torch.Tensor, |
|
gk: torch.Tensor, |
|
initial_state: Optional[torch.Tensor] = None, |
|
output_final_state: bool = False, |
|
offsets: Optional[torch.LongTensor] = None, |
|
indices: Optional[torch.LongTensor] = None, |
|
head_first: bool = True, |
|
chunk_size: int = 64 |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
if head_first: |
|
B, H, T, K, V = *kg.shape, u.shape[-1] |
|
else: |
|
B, T, H, K, V = *kg.shape, u.shape[-1] |
|
BT = min(chunk_size, max(triton.next_power_of_2(T), 16)) |
|
|
|
if offsets is None: |
|
N, NT, chunk_offsets = B, triton.cdiv(T, BT), None |
|
else: |
|
N, NT, chunk_offsets = len(offsets) - 1, len(indices), prepare_chunk_offsets(offsets, BT) |
|
BK = triton.next_power_of_2(K) |
|
assert BK <= 256, "current kernel does not support head dimension larger than 256." |
|
|
|
|
|
if check_shared_mem('hopper', kg.device.index): |
|
BV = 64 |
|
BC = 64 if K <= 128 else 32 |
|
elif check_shared_mem('ampere', kg.device.index): |
|
BV = 32 |
|
BC = 32 |
|
else: |
|
BV = 16 |
|
BC = 16 |
|
|
|
BC = min(BT, BC) |
|
NK = triton.cdiv(K, BK) |
|
NV = triton.cdiv(V, BV) |
|
assert NK == 1, 'NK > 1 is not supported because it involves time-consuming synchronization' |
|
|
|
if head_first: |
|
h = kg.new_empty(B, H, NT, K, V) |
|
else: |
|
h = kg.new_empty(B, NT, H, K, V) |
|
final_state = kg.new_empty(N, H, K, V, dtype=torch.float32) if output_final_state else None |
|
v_new = torch.empty_like(u) |
|
grid = (NK, NV, N * H) |
|
chunk_dplr_fwd_kernel_h[grid]( |
|
kg=kg, |
|
v=v, |
|
w=w, |
|
bg=bg, |
|
u=u, |
|
v_new=v_new, |
|
h=h, |
|
gk=gk, |
|
h0=initial_state, |
|
ht=final_state, |
|
offsets=offsets, |
|
chunk_offsets=chunk_offsets, |
|
T=T, |
|
H=H, |
|
K=K, |
|
V=V, |
|
BT=BT, |
|
BC=BC, |
|
BK=BK, |
|
BV=BV, |
|
NT=NT, |
|
HEAD_FIRST=head_first |
|
) |
|
return h, v_new, final_state |
|
|