|
|
|
|
|
|
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
import triton |
|
import triton.language as tl |
|
|
|
from fla.ops.common.utils import prepare_chunk_offsets |
|
from fla.ops.utils.op import exp |
|
from fla.utils import check_shared_mem, use_cuda_graph |
|
|
|
|
|
@triton.heuristics({ |
|
'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None, |
|
'USE_INITIAL_STATE': lambda args: args['dh0'] is not None, |
|
'USE_OFFSETS': lambda args: args['offsets'] is not None, |
|
}) |
|
@triton.autotune( |
|
configs=[ |
|
triton.Config({}, num_warps=num_warps, num_stages=num_stages) |
|
for num_warps in [2, 4, 8, 16, 32] |
|
for num_stages in [2, 3, 4] |
|
], |
|
key=['BT', 'BK', 'BV', "V"], |
|
use_cuda_graph=use_cuda_graph, |
|
) |
|
@triton.jit(do_not_specialize=['T']) |
|
def chunk_dplr_bwd_kernel_dhu( |
|
qg, |
|
bg, |
|
w, |
|
gk, |
|
dht, |
|
dh0, |
|
do, |
|
dh, |
|
dv, |
|
dv2, |
|
offsets, |
|
chunk_offsets, |
|
T, |
|
H: tl.constexpr, |
|
K: tl.constexpr, |
|
V: tl.constexpr, |
|
BT: tl.constexpr, |
|
BC: tl.constexpr, |
|
BK: tl.constexpr, |
|
BV: tl.constexpr, |
|
USE_FINAL_STATE_GRADIENT: tl.constexpr, |
|
USE_INITIAL_STATE: tl.constexpr, |
|
USE_OFFSETS: tl.constexpr, |
|
HEAD_FIRST: tl.constexpr |
|
): |
|
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2) |
|
i_n, i_h = i_nh // H, i_nh % H |
|
if USE_OFFSETS: |
|
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) |
|
T = eos - bos |
|
NT = tl.cdiv(T, BT) |
|
boh = tl.load(chunk_offsets + i_n).to(tl.int32) |
|
else: |
|
bos, eos = i_n * T, i_n * T + T |
|
NT = tl.cdiv(T, BT) |
|
boh = i_n * NT |
|
|
|
|
|
b_dh = tl.zeros([BK, BV], dtype=tl.float32) |
|
if USE_FINAL_STATE_GRADIENT: |
|
p_dht = tl.make_block_ptr(dht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) |
|
b_dh += tl.load(p_dht, boundary_check=(0, 1)) |
|
|
|
mask_k = tl.arange(0, BK) < K |
|
for i_t in range(NT - 1, -1, -1): |
|
if HEAD_FIRST: |
|
p_dh = tl.make_block_ptr(dh + (i_nh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) |
|
else: |
|
p_dh = tl.make_block_ptr(dh + ((boh+i_t) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) |
|
tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1)) |
|
b_dh_tmp = tl.zeros([BK, BV], dtype=tl.float32) |
|
for i_c in range(tl.cdiv(BT, BC) - 1, -1, -1): |
|
if HEAD_FIRST: |
|
p_qg = tl.make_block_ptr(qg + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1)) |
|
p_bg = tl.make_block_ptr(bg + i_nh * T*K, (T, K), (K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0)) |
|
p_w = tl.make_block_ptr(w + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1)) |
|
p_dv = tl.make_block_ptr(dv + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) |
|
p_do = tl.make_block_ptr(do + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) |
|
p_dv2 = tl.make_block_ptr(dv2 + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) |
|
else: |
|
p_qg = tl.make_block_ptr(qg+(bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1)) |
|
p_bg = tl.make_block_ptr(bg+(bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0)) |
|
p_w = tl.make_block_ptr(w+(bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1)) |
|
p_dv = tl.make_block_ptr(dv+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) |
|
p_do = tl.make_block_ptr(do+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) |
|
p_dv2 = tl.make_block_ptr(dv2+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) |
|
|
|
b_qg = tl.load(p_qg, boundary_check=(0, 1)) |
|
|
|
b_bg = tl.load(p_bg, boundary_check=(0, 1)) |
|
b_w = tl.load(p_w, boundary_check=(0, 1)) |
|
|
|
b_do = tl.load(p_do, boundary_check=(0, 1)) |
|
b_dv = tl.load(p_dv, boundary_check=(0, 1)) |
|
b_dv2 = b_dv + tl.dot(b_bg, b_dh.to(b_bg.dtype)) |
|
tl.store(p_dv2, b_dv2.to(p_dv.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
b_dh_tmp += tl.dot(b_qg, b_do.to(b_qg.dtype)) |
|
b_dh_tmp += tl.dot(b_w, b_dv2.to(b_qg.dtype)) |
|
last_idx = min((i_t + 1) * BT, T) - 1 |
|
if HEAD_FIRST: |
|
bg_last = tl.load(gk + (i_nh * T + last_idx) * K + tl.arange(0, BK), mask=mask_k) |
|
else: |
|
bg_last = tl.load(gk + ((bos + last_idx) * H + i_h) * K + tl.arange(0, BK), mask=mask_k) |
|
b_dh *= exp(bg_last)[:, None] |
|
b_dh += b_dh_tmp |
|
|
|
if USE_INITIAL_STATE: |
|
p_dh0 = tl.make_block_ptr(dh0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) |
|
tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
|
|
def chunk_dplr_bwd_dhu( |
|
qg: torch.Tensor, |
|
bg: torch.Tensor, |
|
w: torch.Tensor, |
|
gk: torch.Tensor, |
|
h0: torch.Tensor, |
|
dht: Optional[torch.Tensor], |
|
do: torch.Tensor, |
|
dv: torch.Tensor, |
|
offsets: Optional[torch.LongTensor] = None, |
|
indices: Optional[torch.LongTensor] = None, |
|
head_first: bool = True, |
|
chunk_size: int = 64 |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
if head_first: |
|
B, H, T, K, V = *qg.shape, do.shape[-1] |
|
else: |
|
B, T, H, K, V = *qg.shape, do.shape[-1] |
|
BT = min(chunk_size, max(triton.next_power_of_2(T), 16)) |
|
BK = triton.next_power_of_2(K) |
|
assert BK <= 256, "current kernel does not support head dimension being larger than 256." |
|
|
|
if check_shared_mem('hopper', qg.device.index): |
|
BV = 64 |
|
BC = 64 if K <= 128 else 32 |
|
elif check_shared_mem('ampere', qg.device.index): |
|
BV = 32 |
|
BC = 32 |
|
else: |
|
BV = 16 |
|
BC = 16 |
|
|
|
|
|
if offsets is None: |
|
N, NT, chunk_offsets = B, triton.cdiv(T, BT), None |
|
else: |
|
N, NT, chunk_offsets = len(offsets) - 1, len(indices), prepare_chunk_offsets(offsets, BT) |
|
|
|
BC = min(BT, BC) |
|
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV) |
|
assert NK == 1, 'NK > 1 is not supported because it involves time-consuming synchronization' |
|
|
|
if head_first: |
|
dh = qg.new_empty(B, H, NT, K, V) |
|
else: |
|
dh = qg.new_empty(B, NT, H, K, V) |
|
dh0 = torch.empty_like(h0, dtype=torch.float32) if h0 is not None else None |
|
dv2 = torch.zeros_like(dv) |
|
|
|
grid = (NK, NV, N * H) |
|
chunk_dplr_bwd_kernel_dhu[grid]( |
|
qg=qg, |
|
bg=bg, |
|
w=w, |
|
gk=gk, |
|
dht=dht, |
|
dh0=dh0, |
|
do=do, |
|
dh=dh, |
|
dv=dv, |
|
dv2=dv2, |
|
offsets=offsets, |
|
chunk_offsets=chunk_offsets, |
|
T=T, |
|
H=H, |
|
K=K, |
|
V=V, |
|
BT=BT, |
|
BC=BC, |
|
BK=BK, |
|
BV=BV, |
|
HEAD_FIRST=head_first |
|
) |
|
return dh, dh0, dv2 |
|
|