zaydzuhri's picture
Add files using upload-large-folder tool
f72219a verified
raw
history blame
11.9 kB
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
from typing import Optional
import torch
import triton
from fla.ops.common.utils import prepare_chunk_indices
from fla.ops.generalized_delta_rule.dplr.chunk_A_bwd import chunk_dplr_bwd_dqk_intra
from fla.ops.generalized_delta_rule.dplr.chunk_A_fwd import chunk_fwd_intra_dplr_fn
from fla.ops.generalized_delta_rule.dplr.chunk_h_bwd import chunk_dplr_bwd_dhu
from fla.ops.generalized_delta_rule.dplr.chunk_h_fwd import chunk_dplr_fwd_h
from fla.ops.generalized_delta_rule.dplr.chunk_o_bwd import chunk_dplr_bwd_dAu, chunk_dplr_bwd_dv, chunk_dplr_bwd_o
from fla.ops.generalized_delta_rule.dplr.chunk_o_fwd import chunk_dplr_fwd_o
from fla.ops.generalized_delta_rule.dplr.wy_fast_bwd import chunk_dplr_bwd_wy
from fla.ops.generalized_delta_rule.dplr.wy_fast_fwd import fwd_prepare_wy_repr
from fla.ops.rwkv6.chunk import chunk_rwkv6_fwd_cumsum
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, input_guard
def chunk_dplr_fwd(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
a: torch.Tensor,
b: torch.Tensor,
gk: torch.Tensor,
scale: float,
initial_state: torch.Tensor,
output_final_state: bool,
offsets: Optional[torch.LongTensor] = None,
indices: Optional[torch.LongTensor] = None,
head_first: bool = True,
chunk_size: int = 64
):
T = q.shape[2] if head_first else q.shape[1]
BT = min(chunk_size, max(triton.next_power_of_2(T), 16))
gi, ge = chunk_rwkv6_fwd_cumsum(gk, BT, offsets=offsets, indices=indices, head_first=head_first)
A_ab, A_qk, A_ak, A_qb, qg, kg, ag, bg = chunk_fwd_intra_dplr_fn(
q=q,
k=k,
a=a,
b=b,
gi=gi,
ge=ge,
scale=scale,
offsets=offsets,
indices=indices,
chunk_size=BT,
head_first=head_first
)
del ge
# A_ab, A_ak, gi, ge torch.float32
# A_qk, A_qb, qg, kg, ag, bg, dtype=q.dtype, eg: bf16
w, u, _ = fwd_prepare_wy_repr(
ag=ag,
A_ab=A_ab,
A_ak=A_ak,
v=v,
offsets=offsets,
indices=indices,
head_first=head_first,
chunk_size=BT
)
del A_ab, A_ak
h, v_new, final_state = chunk_dplr_fwd_h(
kg=kg,
bg=bg,
v=v,
w=w,
u=u,
gk=gi,
initial_state=initial_state,
output_final_state=output_final_state,
offsets=offsets,
indices=indices,
head_first=head_first,
chunk_size=BT
)
del u, kg, bg, gi
o = chunk_dplr_fwd_o(
qg=qg,
v=v,
v_new=v_new,
A_qk=A_qk,
A_qb=A_qb,
h=h,
offsets=offsets,
indices=indices,
head_first=head_first,
chunk_size=BT
)
del v_new, h, A_qk, A_qb
return o, final_state
class ChunkDPLRDeltaRuleFunction(torch.autograd.Function):
@staticmethod
@input_guard
@autocast_custom_fwd
def forward(
ctx,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
a: torch.Tensor,
b: torch.Tensor,
gk: torch.Tensor,
scale: float,
initial_state: torch.Tensor,
output_final_state: bool,
offsets: Optional[torch.LongTensor] = None,
head_first: bool = True
):
chunk_size = 16
# 2-d indices denoting the offsets of chunks in each sequence
# for example, if the passed `offsets` is [0, 100, 356] and `chunk_size` is 64,
# then there are 2 and 4 chunks in the 1st and 2nd sequences respectively, and `indices` will be
# [[0, 0], [0, 1], [1, 0], [1, 1], [1, 2], [1, 3]]
indices = prepare_chunk_indices(offsets, chunk_size) if offsets is not None else None
o, final_state = chunk_dplr_fwd(
q=q,
k=k,
v=v,
a=a,
b=b,
gk=gk,
scale=scale,
initial_state=initial_state,
output_final_state=output_final_state,
offsets=offsets,
indices=indices,
head_first=head_first,
chunk_size=chunk_size
)
ctx.save_for_backward(q, k, v, a, b, gk, initial_state)
ctx.head_first = head_first
ctx.offsets = offsets
ctx.indices = indices
ctx.scale = scale
ctx.chunk_size = chunk_size
return o.to(q.dtype), final_state
@staticmethod
@input_guard
@autocast_custom_bwd
def backward(
ctx,
do: torch.Tensor,
dht: torch.Tensor
):
q, k, v, a, b, gk, initial_state = ctx.saved_tensors
BT = ctx.chunk_size
head_first = ctx.head_first
offsets = ctx.offsets
indices = ctx.indices
scale = ctx.scale
# ******* start recomputing everything, otherwise i believe the gpu memory will be exhausted *******
gi, ge = chunk_rwkv6_fwd_cumsum(gk, BT, offsets=offsets, indices=indices, head_first=head_first)
A_ab, A_qk, A_ak, A_qb, qg, kg, ag, bg = chunk_fwd_intra_dplr_fn(
q=q,
k=k,
a=a,
b=b,
gi=gi,
ge=ge,
scale=scale,
offsets=offsets,
indices=indices,
chunk_size=BT,
head_first=head_first
)
w, u, A_ab_inv = fwd_prepare_wy_repr(
ag=ag,
A_ab=A_ab,
A_ak=A_ak,
v=v,
offsets=offsets,
indices=indices,
head_first=head_first,
chunk_size=BT
)
del A_ab
h, v_new, _ = chunk_dplr_fwd_h(
kg=kg,
bg=bg,
v=v,
w=w,
u=u,
gk=gi,
initial_state=initial_state,
offsets=offsets,
indices=indices,
head_first=head_first,
chunk_size=BT
)
del u
# ******* end of recomputation *******
# A_ak, A_ab_inv, gi, ge torch.float32
# A_qk, A_qb, qg, kg, ag, bg, v_new dtype=q.dtype, eg: bf16
dv_new_intra, dA_qk, dA_qb = chunk_dplr_bwd_dAu(
v=v,
v_new=v_new,
do=do,
A_qb=A_qb,
scale=scale,
offsets=offsets,
indices=indices,
head_first=head_first,
chunk_size=BT
)
dh, dh0, dv_new = chunk_dplr_bwd_dhu(
qg=qg,
bg=bg,
w=w,
gk=gi,
h0=initial_state,
dht=dht,
do=do,
dv=dv_new_intra,
offsets=offsets,
indices=indices,
head_first=head_first,
chunk_size=BT
)
dv = chunk_dplr_bwd_dv(
A_qk=A_qk,
kg=kg,
do=do,
dh=dh,
offsets=offsets,
indices=indices,
head_first=head_first,
chunk_size=BT
)
del A_qk
dqg, dkg, dw, dbg, dgk_last = chunk_dplr_bwd_o(
k=kg,
b=bg,
v=v,
v_new=v_new,
do=do,
h=h,
dh=dh,
dv=dv_new,
w=w,
gk=gi,
offsets=offsets,
indices=indices,
chunk_size=BT,
scale=scale,
head_first=head_first,
)
del v_new
dA_ab, dA_ak, dv, dag = chunk_dplr_bwd_wy(
A_ab_inv=A_ab_inv,
A_ak=A_ak,
v=v,
ag=ag,
dw=dw,
du=dv_new,
dv0=dv,
offsets=offsets,
indices=indices,
head_first=head_first,
chunk_size=BT
)
del A_ak
dq, dk, da, db, dgk = chunk_dplr_bwd_dqk_intra(
q=q,
k=k,
a=a,
b=b,
gi=gi,
ge=ge,
dAqk=dA_qk,
dAqb=dA_qb,
dAak=dA_ak,
dAab=dA_ab,
dgk_last=dgk_last,
dqg=dqg,
dkg=dkg,
dag=dag,
dbg=dbg,
chunk_size=BT,
scale=scale,
head_first=head_first,
offsets=offsets,
indices=indices
)
return dq.to(q), dk.to(k), dv.to(v), da.to(a), db.to(b), dgk.to(gk), None, dh0, None, None, None
@torch.compiler.disable
def chunk_dplr_delta_rule(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
a: torch.Tensor,
b: torch.Tensor,
gk: torch.Tensor,
scale: Optional[float] = None,
initial_state: Optional[torch.Tensor] = None,
output_final_state: bool = False,
cu_seqlens: Optional[torch.LongTensor] = None,
head_first: bool = False
):
r"""
Args:
q (torch.Tensor):
queries of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`.
k (torch.Tensor):
keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`.
v (torch.Tensor):
values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`.
a (torch.Tensor):
activations of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`.
b (torch.Tensor):
betas of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`.
gk (torch.Tensor):
gk of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`. decay term in log space!
scale (Optional[int]):
Scale factor for the RetNet attention scores.
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
initial_state (Optional[torch.Tensor]):
Initial state of shape `[N, H, K, V]` for `N` input sequences.
For equal-length input sequences, `N` equals the batch size `B`.
Default: `None`.
output_final_state (Optional[bool]):
Whether to output the final state of shape `[N, H, K, V]`. Default: `False`.
cu_seqlens (torch.LongTensor):
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
consistent with the FlashAttention API.
head_first (Optional[bool]):
Whether the inputs are in the head-first format, which is not supported for variable-length inputs.
Default: `False`.
Returns:
o (torch.Tensor):
Outputs of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`.
final_state (torch.Tensor):
Final state of shape `[N, H, K, V]` if `output_final_state=True` else `None`.
"""
assert q.dtype == k.dtype == v.dtype
# assert q.dtype != torch.float32, "ChunkDeltaRuleFunction does not support float32. Please use bfloat16."
# gk = gk.float()
if cu_seqlens is not None:
if q.shape[0] != 1:
raise ValueError(f"The batch size is expected to be 1 rather than {q.shape[0]} when using `cu_seqlens`."
f"Please flatten variable-length inputs before processing.")
if head_first:
raise RuntimeError("Sequences with variable lengths are not supported for head-first mode")
if initial_state is not None and initial_state.shape[0] != len(cu_seqlens) - 1:
raise ValueError(f"The number of initial states is expected to be equal to the number of input sequences, "
f"i.e., {len(cu_seqlens) - 1} rather than {initial_state.shape[0]}.")
scale = k.shape[-1] ** -0.5 if scale is None else scale
o, final_state = ChunkDPLRDeltaRuleFunction.apply(
q,
k,
v,
a,
b,
gk,
scale,
initial_state,
output_final_state,
cu_seqlens,
head_first
)
return o, final_state