zaydzuhri's picture
Add files using upload-large-folder tool
f72219a verified
raw
history blame
18.3 kB
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
from typing import Optional, Tuple
import torch
import triton
import triton.language as tl
from fla.ops.common.chunk_delta_h import prepare_chunk_offsets
from fla.ops.generalized_delta_rule.iplr.wy_fast import fwd_prepare_wy_repr
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, check_shared_mem, input_guard, use_cuda_graph
BKV_LIST = [64, 128] if check_shared_mem() else [32, 64]
@triton.heuristics({
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
'USE_OFFSETS': lambda args: args['offsets'] is not None,
})
@triton.autotune(
configs=[
triton.Config({}, num_warps=num_warps)
for num_warps in [2, 4, 8, 16]
],
key=['BT', 'BK', 'BV'],
use_cuda_graph=use_cuda_graph,
)
@triton.jit(do_not_specialize=['T'])
def chunk_generalized_iplr_delta_rule_fwd_kernel_h(
k,
v,
d,
b,
u,
v_new,
h,
h0,
ht,
offsets,
chunk_offsets,
T,
H: tl.constexpr,
K: tl.constexpr,
V: tl.constexpr,
BT: tl.constexpr,
BC: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
NT: tl.constexpr,
USE_INITIAL_STATE: tl.constexpr,
STORE_FINAL_STATE: tl.constexpr,
USE_OFFSETS: tl.constexpr,
HEAD_FIRST: tl.constexpr,
):
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_n, i_h = i_nh // H, i_nh % H
if USE_OFFSETS:
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
T = eos - bos
NT = tl.cdiv(T, BT)
boh = tl.load(chunk_offsets + i_n).to(tl.int32)
else:
bos, eos = i_n * T, i_n * T + T
NT = tl.cdiv(T, BT)
boh = i_n * NT
# [BK, BV]
b_h = tl.zeros([BK, BV], dtype=tl.float32)
if USE_INITIAL_STATE:
p_h0 = tl.make_block_ptr(h0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
b_h = tl.load(p_h0, boundary_check=(0, 1)).to(tl.float32)
for i_t in range(NT):
if HEAD_FIRST:
p_h = tl.make_block_ptr(h + (i_nh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
else:
p_h = tl.make_block_ptr(h + ((boh + i_t) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1))
b_hc = tl.zeros([BK, BV], dtype=tl.float32)
# since we need to make all DK in the SRAM. we face serve SRAM memory burden. By subchunking we allievate such burden
for i_c in range(tl.cdiv(min(BT, T - i_t * BT), BC)):
if HEAD_FIRST:
p_k = tl.make_block_ptr(k + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
p_b = tl.make_block_ptr(b + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
p_d = tl.make_block_ptr(d + i_nh * T*K, (T, K), (K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0))
p_v = tl.make_block_ptr(v + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
p_u = tl.make_block_ptr(u + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
p_v_new = tl.make_block_ptr(v_new+i_nh*T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
else:
p_k = tl.make_block_ptr(k+(bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
p_b = tl.make_block_ptr(b+(bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
p_d = tl.make_block_ptr(d+(bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0))
p_v = tl.make_block_ptr(v+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
p_u = tl.make_block_ptr(u+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
p_v_new = tl.make_block_ptr(v_new+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT+i_c*BC, i_v * BV), (BC, BV), (1, 0))
# [BK, BC]
b_k = tl.load(p_k, boundary_check=(0, 1))
b_v = tl.load(p_v, boundary_check=(0, 1))
b_d = tl.load(p_d, boundary_check=(0, 1))
b_b = tl.load(p_b, boundary_check=(0, 1))
b_v2 = tl.dot(b_d, b_h.to(b_d.dtype)) + tl.load(p_u, boundary_check=(0, 1))
b_hc += tl.dot(b_k, b_v)
b_hc += tl.dot(b_b, b_v2.to(b_k.dtype))
tl.store(p_v_new, b_v2.to(p_v_new.dtype.element_ty), boundary_check=(0, 1))
b_h += b_hc
if STORE_FINAL_STATE:
p_ht = tl.make_block_ptr(ht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
@triton.heuristics({
'USE_OFFSETS': lambda args: args['offsets'] is not None,
})
@triton.autotune(
configs=[
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
for BK in BKV_LIST
for BV in BKV_LIST
for num_warps in [2, 4, 8]
for num_stages in [2, 3]
],
key=['BT'],
use_cuda_graph=use_cuda_graph,
)
@triton.jit(do_not_specialize=['T'])
def chunk_generalized_iplr_delta_rule_fwd_kernel_o(
q,
k,
v,
u,
b,
h,
o,
offsets,
indices,
scale,
T,
H: tl.constexpr,
K: tl.constexpr,
V: tl.constexpr,
BT: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
USE_OFFSETS: tl.constexpr,
HEAD_FIRST: tl.constexpr,
):
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_h = i_bh // H, i_bh % H
if USE_OFFSETS:
i_tg = i_t
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
T = eos - bos
NT = tl.cdiv(T, BT)
else:
NT = tl.cdiv(T, BT)
i_tg = i_b * NT + i_t
bos, eos = i_b * T, i_b * T + T
# offset calculation
q += (i_bh * T * K) if HEAD_FIRST else ((bos * H + i_h) * K)
k += (i_bh * T * K) if HEAD_FIRST else ((bos * H + i_h) * K)
b += (i_bh * T * K) if HEAD_FIRST else ((bos * H + i_h) * K)
v += (i_bh * T * V) if HEAD_FIRST else ((bos * H + i_h) * V)
u += (i_bh * T * V) if HEAD_FIRST else ((bos * H + i_h) * V)
o += (i_bh * T * V) if HEAD_FIRST else ((bos * H + i_h) * V)
h += ((i_bh * NT + i_t) * K * V) if HEAD_FIRST else ((i_tg * H + i_h) * K * V)
stride_qk = K if HEAD_FIRST else H*K
stride_vo = V if HEAD_FIRST else H*V
b_o = tl.zeros([BT, BV], dtype=tl.float32)
b_Aqk = tl.zeros([BT, BT], dtype=tl.float32)
b_Aqb = tl.zeros([BT, BT], dtype=tl.float32)
for i_k in range(tl.cdiv(K, BK)):
p_q = tl.make_block_ptr(q, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_k = tl.make_block_ptr(k, (K, T), (1, stride_qk), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_h = tl.make_block_ptr(h, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
p_b = tl.make_block_ptr(b, (K, T), (1, stride_qk), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
# [BT, BK]
b_q = tl.load(p_q, boundary_check=(0, 1))
# [BK, BT]
b_k = tl.load(p_k, boundary_check=(0, 1))
b_b = tl.load(p_b, boundary_check=(0, 1))
# [BK, BV]
b_h = tl.load(p_h, boundary_check=(0, 1))
# [BT, BK] @ [BK, BV] -> [BT, BV]
b_o += tl.dot(b_q, b_h)
# [BT, BK] @ [BK, BT] -> [BT, BT]
b_Aqk += tl.dot(b_q, b_k)
# [BT, BK] @ [BK, BT] -> [BT, BT]
b_Aqb += tl.dot(b_q, b_b)
o_i = tl.arange(0, BT)
m_A = o_i[:, None] >= o_i[None, :]
b_Aqk = tl.where(m_A, b_Aqk, 0)
b_Aqb = tl.where(m_A, b_Aqb, 0)
p_v = tl.make_block_ptr(v, (T, V), (stride_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_u = tl.make_block_ptr(u, (T, V), (stride_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_o = tl.make_block_ptr(o, (T, V), (stride_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
b_v = tl.load(p_v, boundary_check=(0, 1))
b_u = tl.load(p_u, boundary_check=(0, 1))
b_o = (b_o + tl.dot(b_Aqk.to(b_v.dtype), b_v) + tl.dot(b_Aqb.to(b_u.dtype), b_u)) * scale
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
def chunk_generalized_iplr_delta_rule_fwd_o(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
v_new: torch.Tensor,
b: torch.Tensor,
h: torch.Tensor,
scale: Optional[float] = None,
offsets: Optional[torch.LongTensor] = None,
indices: Optional[torch.LongTensor] = None,
head_first: bool = True,
chunk_size: int = 64
) -> torch.Tensor:
if head_first:
B, H, T, K, V = *q.shape, v.shape[-1]
else:
B, T, H, K, V = *q.shape, v.shape[-1]
if scale is None:
scale = k.shape[-1] ** -0.5
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
o = torch.empty_like(v)
def grid(meta): return (
triton.cdiv(V, meta['BV']),
NT,
B * H
)
chunk_generalized_iplr_delta_rule_fwd_kernel_o[grid](
q=q,
k=k,
v=v,
u=v_new,
b=b,
h=h,
o=o,
offsets=offsets,
indices=indices,
scale=scale,
T=T,
H=H,
K=K,
V=V,
BT=BT,
HEAD_FIRST=head_first
)
return o
def chunk_generalized_iplr_delta_rule_fwd_h(
k: torch.Tensor,
v: torch.Tensor,
w: torch.Tensor,
u: torch.Tensor,
b: torch.Tensor,
initial_state: Optional[torch.Tensor] = None,
output_final_state: bool = False,
offsets: Optional[torch.LongTensor] = None,
indices: Optional[torch.LongTensor] = None,
head_first: bool = True,
chunk_size: int = 64
) -> Tuple[torch.Tensor, torch.Tensor]:
if head_first:
B, H, T, K, V = *k.shape, u.shape[-1]
else:
B, T, H, K, V = *k.shape, u.shape[-1]
BT = min(chunk_size, max(triton.next_power_of_2(T), 16))
# N: the actual number of sequences in the batch with either equal or variable lengths
if offsets is None:
N, NT, chunk_offsets = B, triton.cdiv(T, BT), None
else:
N, NT, chunk_offsets = len(offsets) - 1, len(indices), prepare_chunk_offsets(offsets, BT)
BK = triton.next_power_of_2(K)
assert BK <= 256, "current kernel does not support head dimension larger than 256."
# H100 can have larger block size
if check_shared_mem('hopper', k.device.index):
BV = 64
BC = 64 if K <= 128 else 32
elif check_shared_mem('ampere', k.device.index): # A100
BV = 32
BC = 32
else:
BV = 16
BC = 16
BC = min(BT, BC)
NK = triton.cdiv(K, BK)
NV = triton.cdiv(V, BV)
assert NK == 1, 'NK > 1 is not supported because it involves time-consuming synchronization'
if head_first:
h = k.new_empty(B, H, NT, K, V)
else:
h = k.new_empty(B, NT, H, K, V)
final_state = k.new_empty(N, H, K, V, dtype=torch.float32) if output_final_state else None
v_new = torch.empty_like(u)
grid = (NK, NV, N * H)
chunk_generalized_iplr_delta_rule_fwd_kernel_h[grid](
k=k,
v=v,
d=w,
b=b,
u=u,
v_new=v_new,
h=h,
h0=initial_state,
ht=final_state,
offsets=offsets,
chunk_offsets=chunk_offsets,
T=T,
H=H,
K=K,
V=V,
BT=BT,
BC=BC,
BK=BK,
BV=BV,
NT=NT,
HEAD_FIRST=head_first
)
return h, v_new, final_state
def chunk_generalized_iplr_delta_rule_fwd(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
a: torch.Tensor,
b: torch.Tensor,
scale: float,
initial_state: torch.Tensor,
output_final_state: bool,
offsets: Optional[torch.LongTensor] = None,
indices: Optional[torch.LongTensor] = None,
head_first: bool = True,
chunk_size: int = 64
):
T = q.shape[2] if head_first else q.shape[1]
BT = min(chunk_size, max(triton.next_power_of_2(T), 16))
w, u, _ = fwd_prepare_wy_repr(
a=a,
b=b,
k=k,
v=v,
offsets=offsets,
indices=indices,
head_first=head_first,
chunk_size=BT
)
h, v_new, final_state = chunk_generalized_iplr_delta_rule_fwd_h(
k=k,
v=v,
b=b,
w=w,
u=u,
initial_state=initial_state,
output_final_state=output_final_state,
offsets=offsets,
indices=indices,
head_first=head_first,
chunk_size=BT
)
o = chunk_generalized_iplr_delta_rule_fwd_o(
q=q,
k=k,
v=v,
v_new=v_new,
b=b,
h=h,
scale=scale,
offsets=offsets,
indices=indices,
head_first=head_first,
chunk_size=BT
)
return o, final_state
class ChunkGeneralizedIPLRDeltaRuleFunction(torch.autograd.Function):
@staticmethod
@input_guard
@autocast_custom_fwd
def forward(
ctx,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
a: torch.Tensor,
b: torch.Tensor,
scale: float,
initial_state: torch.Tensor,
output_final_state: bool,
offsets: Optional[torch.LongTensor] = None,
head_first: bool = True
):
chunk_size = 64
# 2-d indices denoting the offsets of chunks in each sequence
# for example, if the passed `offsets` is [0, 100, 356] and `chunk_size` is 64,
# then there are 2 and 4 chunks in the 1st and 2nd sequences respectively, and `indices` will be
# [[0, 0], [0, 1], [1, 0], [1, 1], [1, 2], [1, 3]]
indices = None
if offsets is not None:
indices = torch.cat([torch.arange(n) for n in triton.cdiv(offsets[1:] - offsets[:-1], chunk_size).tolist()])
indices = torch.stack([indices.eq(0).cumsum(0) - 1, indices], 1).to(offsets)
o, final_state = chunk_generalized_iplr_delta_rule_fwd(
q=q,
k=k,
v=v,
a=a,
b=b,
scale=scale,
initial_state=initial_state,
output_final_state=output_final_state,
offsets=offsets,
indices=indices,
head_first=head_first,
chunk_size=chunk_size
)
return o.to(q.dtype), final_state
@staticmethod
@input_guard
@autocast_custom_bwd
def backward(
ctx,
do: torch.Tensor,
dht: torch.Tensor
):
raise NotImplementedError(
"Backward pass for ChunkGeneralizedIPLRDeltaRuleFunction is not implemented yet. "
"Stay tuned!"
)
@torch.compiler.disable
def chunk_iplr_delta_rule(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
a: torch.Tensor,
b: torch.Tensor,
scale: float = None,
initial_state: torch.Tensor = None,
output_final_state: bool = False,
cu_seqlens: Optional[torch.LongTensor] = None,
head_first: bool = True
):
r"""
Args:
q (torch.Tensor):
queries of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`.
k (torch.Tensor):
keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`.
v (torch.Tensor):
values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`.
a (torch.Tensor):
activations of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`.
b (torch.Tensor):
betas of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`.
scale (Optional[int]):
Scale factor for the RetNet attention scores.
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
initial_state (Optional[torch.Tensor]):
Initial state of shape `[N, H, K, V]` for `N` input sequences.
For equal-length input sequences, `N` equals the batch size `B`.
Default: `None`.
output_final_state (Optional[bool]):
Whether to output the final state of shape `[N, H, K, V]`. Default: `False`.
cu_seqlens (torch.LongTensor):
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
consistent with the FlashAttention API.
head_first (Optional[bool]):
Whether the inputs are in the head-first format, which is not supported for variable-length inputs.
Default: `True`.
Returns:
o (torch.Tensor):
Outputs of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`.
final_state (torch.Tensor):
Final state of shape `[N, H, K, V]` if `output_final_state=True` else `None`.
"""
assert q.dtype == k.dtype == v.dtype
assert q.dtype != torch.float32, "ChunkDeltaRuleFunction does not support float32. Please use bfloat16."
if cu_seqlens is not None:
if q.shape[0] != 1:
raise ValueError(f"The batch size is expected to be 1 rather than {q.shape[0]} when using `cu_seqlens`."
f"Please flatten variable-length inputs before processing.")
if head_first:
raise RuntimeError("Sequences with variable lengths are not supported for head-first mode")
if initial_state is not None and initial_state.shape[0] != len(cu_seqlens) - 1:
raise ValueError(f"The number of initial states is expected to be equal to the number of input sequences, "
f"i.e., {len(cu_seqlens) - 1} rather than {initial_state.shape[0]}.")
scale = k.shape[-1] ** -0.5 if scale is None else scale
o, final_state = ChunkGeneralizedIPLRDeltaRuleFunction.apply(
q,
k,
v,
a,
b,
scale,
initial_state,
output_final_state,
cu_seqlens,
head_first
)
return o, final_state