|
|
|
|
|
|
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
import triton |
|
import triton.language as tl |
|
|
|
from fla.utils import check_shared_mem, is_intel_alchemist, use_cuda_graph |
|
|
|
|
|
triton_config = {'grf_mode': 'large'} if is_intel_alchemist else {} |
|
|
|
|
|
@triton.heuristics({ |
|
'USE_OFFSETS': lambda args: args['offsets'] is not None |
|
}) |
|
@triton.autotune( |
|
configs=[ |
|
triton.Config(triton_config, num_warps=num_warps, num_stages=num_stages) |
|
for num_warps in [2, 4, 8, 16, 32] |
|
for num_stages in [2, 3, 4] |
|
], |
|
key=['BT', 'BK', 'BV'], |
|
use_cuda_graph=use_cuda_graph, |
|
) |
|
@triton.jit(do_not_specialize=['T']) |
|
def bwd_prepare_wy_repr_kernel( |
|
A_ab_inv, |
|
A_ak, |
|
ag, |
|
v, |
|
dw, |
|
du, |
|
dv, |
|
dv0, |
|
dag, |
|
dAak, |
|
dAab, |
|
offsets, |
|
indices, |
|
T, |
|
H: tl.constexpr, |
|
K: tl.constexpr, |
|
V: tl.constexpr, |
|
BT: tl.constexpr, |
|
BK: tl.constexpr, |
|
BV: tl.constexpr, |
|
USE_OFFSETS: tl.constexpr, |
|
HEAD_FIRST: tl.constexpr |
|
): |
|
i_t, i_bh = tl.program_id(0), tl.program_id(1) |
|
i_b, i_h = i_bh // H, i_bh % H |
|
if USE_OFFSETS: |
|
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) |
|
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) |
|
T = eos - bos |
|
else: |
|
bos, eos = i_b * T, i_b * T + T |
|
|
|
if HEAD_FIRST: |
|
p_Aab_inv_t = tl.make_block_ptr(A_ab_inv + i_bh * T * BT, (BT, T), (1, BT), (0, i_t * BT), (BT, BT), (0, 1)) |
|
p_Aak_t = tl.make_block_ptr(A_ak + i_bh * T * BT, (BT, T), (1, BT), (0, i_t * BT), (BT, BT), (0, 1)) |
|
p_dAak = tl.make_block_ptr(dAak + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) |
|
p_dAab = tl.make_block_ptr(dAab + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) |
|
else: |
|
p_Aak_t = tl.make_block_ptr(A_ak + (bos*H + i_h) * BT, (BT, T), (1, H*BT), (0, i_t * BT), (BT, BT), (0, 1)) |
|
p_Aab_inv_t = tl.make_block_ptr(A_ab_inv + (bos*H + i_h) * BT, (BT, T), (1, H*BT), (0, i_t * BT), (BT, BT), (0, 1)) |
|
p_dAak = tl.make_block_ptr(dAak + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) |
|
p_dAab = tl.make_block_ptr(dAab + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) |
|
|
|
b_A_ab_inv_t = tl.load(p_Aab_inv_t, boundary_check=(0, 1)) |
|
b_A_ak_t = tl.load(p_Aak_t, boundary_check=(0, 1)) |
|
b_A_ak_t = tl.where(tl.arange(0, BT)[:, None] < tl.arange(0, BT)[None, :], b_A_ak_t, 0) |
|
b_A_ab_inv_t = tl.where(tl.arange(0, BT)[:, None] <= tl.arange(0, BT)[None, :], b_A_ab_inv_t, 0) |
|
b_A_tmp_t = tl.dot(b_A_ak_t, b_A_ab_inv_t).to(v.dtype.element_ty) |
|
b_dA_tmp = tl.zeros([BT, BT], dtype=tl.float32) |
|
|
|
for i_v in range(tl.cdiv(V, BV)): |
|
if HEAD_FIRST: |
|
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
p_dv = tl.make_block_ptr(dv + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
p_dv0 = tl.make_block_ptr(dv0 + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
p_du = tl.make_block_ptr(du + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
else: |
|
p_v = tl.make_block_ptr(v + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
p_dv = tl.make_block_ptr(dv + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
p_dv0 = tl.make_block_ptr(dv0 + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
p_du = tl.make_block_ptr(du + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
b_v = tl.load(p_v, boundary_check=(0, 1)) |
|
b_du = tl.load(p_du, boundary_check=(0, 1)) |
|
b_dA_tmp += tl.dot(b_du.to(b_v.dtype), tl.trans(b_v)) |
|
b_dv0 = tl.load(p_dv0, boundary_check=(0, 1)) |
|
b_dv = b_dv0 + tl.dot(b_A_tmp_t, b_du) |
|
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
b_dA_tmp = tl.where(tl.arange(0, BT)[:, None] > tl.arange(0, BT)[None, :], b_dA_tmp, 0) |
|
b_dA_ak = tl.dot(b_A_ab_inv_t, b_dA_tmp) |
|
b_dA_ak = tl.where(tl.arange(0, BT)[:, None] > tl.arange(0, BT)[None, :], b_dA_ak, 0) |
|
tl.store(p_dAak, b_dA_ak, boundary_check=(0, 1)) |
|
b_dA_ab_inv = tl.dot(b_dA_tmp, b_A_ak_t) |
|
|
|
for i_k in range(tl.cdiv(K, BK)): |
|
if HEAD_FIRST: |
|
p_ag = tl.make_block_ptr(ag + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_dag = tl.make_block_ptr(dag + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_dw = tl.make_block_ptr(dw + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
else: |
|
p_ag = tl.make_block_ptr(ag + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_dag = tl.make_block_ptr(dag + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_dw = tl.make_block_ptr(dw + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
b_ag = tl.load(p_ag, boundary_check=(0, 1)) |
|
b_dw = tl.load(p_dw, boundary_check=(0, 1)) |
|
b_dA_ab_inv += tl.dot(b_dw, tl.trans(b_ag)) |
|
b_dag = tl.dot(b_A_ab_inv_t.to(b_dw.dtype), b_dw) |
|
tl.store(p_dag, b_dag.to(p_dag.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b_dA_ab_inv = tl.where(tl.arange(0, BT)[:, None] >= tl.arange(0, BT)[None, :], b_dA_ab_inv, 0) |
|
b_dA_ab_inv = tl.dot(b_A_ab_inv_t, b_dA_ab_inv) |
|
b_dA_ab_inv = tl.dot(b_dA_ab_inv, b_A_ab_inv_t) |
|
b_dA_ab_inv = tl.where(tl.arange(0, BT)[:, None] > tl.arange(0, BT)[None, :], b_dA_ab_inv, 0) |
|
tl.store(p_dAab, b_dA_ab_inv, boundary_check=(0, 1)) |
|
|
|
|
|
def chunk_dplr_bwd_wy( |
|
A_ab_inv: torch.Tensor, |
|
A_ak: torch.Tensor, |
|
v: torch.Tensor, |
|
ag: torch.Tensor, |
|
dw: torch.Tensor, |
|
du: torch.Tensor, |
|
dv0: torch.Tensor, |
|
offsets: Optional[torch.LongTensor], |
|
indices: Optional[torch.LongTensor], |
|
head_first: bool, |
|
chunk_size: int, |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
A_ab_inv, A_ak, v, ag, dw, du = map(lambda x: x.contiguous(), [A_ab_inv, A_ak, v, ag, dw, du]) |
|
if head_first: |
|
B, H, T, K, V = *dw.shape, du.shape[-1] |
|
else: |
|
B, T, H, K, V = *dw.shape, du.shape[-1] |
|
BT = min(chunk_size, max(triton.next_power_of_2(T), 16)) |
|
NT = triton.cdiv(T, BT) if offsets is None else len(indices) |
|
BK = min(triton.next_power_of_2(K), 64) |
|
BV = min(triton.next_power_of_2(V), 64) if check_shared_mem() else min(triton.next_power_of_2(V), 32) |
|
|
|
dA_ab = torch.empty_like(A_ab_inv, dtype=torch.float) |
|
dA_ak = torch.empty_like(A_ak, dtype=torch.float) |
|
dv = torch.empty_like(v) |
|
dag = torch.empty_like(ag) |
|
|
|
bwd_prepare_wy_repr_kernel[(NT, B * H)]( |
|
A_ab_inv=A_ab_inv, |
|
A_ak=A_ak, |
|
ag=ag, |
|
v=v, |
|
dw=dw, |
|
du=du, |
|
dv=dv, |
|
dv0=dv0, |
|
dag=dag, |
|
dAak=dA_ak, |
|
dAab=dA_ab, |
|
offsets=offsets, |
|
indices=indices, |
|
T=T, |
|
H=H, |
|
K=K, |
|
V=V, |
|
BT=BT, |
|
BK=BK, |
|
BV=BV, |
|
HEAD_FIRST=head_first |
|
) |
|
return dA_ab, dA_ak, dv, dag |
|
|