zaydzuhri's picture
Add files using upload-large-folder tool
f72219a verified
raw
history blame
10.8 kB
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
from typing import Optional, Tuple
import torch
import triton
import triton.language as tl
from einops import rearrange
from fla.ops.utils.op import exp
from fla.utils import input_guard
@triton.heuristics({
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
'USE_OFFSETS': lambda args: args['offsets'] is not None
})
@triton.jit(do_not_specialize=['T'])
def fused_recurrent_gated_delta_rule_fwd_kernel(
q,
k,
v,
g,
beta,
o,
h0,
ht,
offsets,
scale,
T,
B: tl.constexpr,
H: tl.constexpr,
K: tl.constexpr,
V: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
USE_INITIAL_STATE: tl.constexpr, # whether to use initial state
STORE_FINAL_STATE: tl.constexpr, # whether to store final state
IS_BETA_HEADWISE: tl.constexpr, # whether beta is headwise vector or scalar,
USE_QK_L2NORM_IN_KERNEL: tl.constexpr,
USE_OFFSETS: tl.constexpr
):
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_n, i_h = i_nh // H, i_nh % H
if USE_OFFSETS:
bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64)
all = T
T = eos - bos
else:
bos, eos = i_n * T, i_n * T + T
all = B * T
o_k = i_k * BK + tl.arange(0, BK)
o_v = i_v * BV + tl.arange(0, BV)
p_q = q + (bos * H + i_h) * K + o_k
p_k = k + (bos * H + i_h) * K + o_k
p_v = v + (bos * H + i_h) * V + o_v
if IS_BETA_HEADWISE:
p_beta = beta + (bos * H + i_h) * V + o_v
else:
p_beta = beta + bos * H + i_h
p_g = g + bos * H + i_h
p_o = o + ((i_k * all + bos) * H + i_h) * V + o_v
mask_k = o_k < K
mask_v = o_v < V
mask_h = mask_k[:, None] & mask_v[None, :]
b_h = tl.zeros([BK, BV], dtype=tl.float32)
if USE_INITIAL_STATE:
p_h0 = h0 + i_nh * K*V + o_k[:, None] * V + o_v[None, :]
b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32)
for _ in range(0, T):
b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32)
b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32)
b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32)
b_g = tl.load(p_g).to(tl.float32)
if USE_QK_L2NORM_IN_KERNEL:
b_q = b_q / (tl.sqrt(tl.sum(b_q * b_q)) + 1e-6)
b_k = b_k / (tl.sqrt(tl.sum(b_k * b_k)) + 1e-6)
b_q = b_q * scale
# [BK, BV]
b_h *= exp(b_g)
# [BV]
b_v -= tl.sum(b_h * b_k[:, None], 0)
if IS_BETA_HEADWISE:
b_beta = tl.load(p_beta, mask=mask_v, other=0).to(tl.float32)
else:
b_beta = tl.load(p_beta).to(tl.float32)
b_v *= b_beta
# [BK, BV]
b_h += b_k[:, None] * b_v[None, :]
# [BV]
b_o = tl.sum(b_h * b_q[:, None], 0)
tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_v)
p_q += H*K
p_k += H*K
p_o += H*V
p_v += H*V
p_g += H
p_beta += H * (V if IS_BETA_HEADWISE else 1)
if STORE_FINAL_STATE:
p_ht = ht + i_nh * K*V + o_k[:, None] * V + o_v[None, :]
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask_h)
def fused_recurrent_gated_delta_rule_fwd(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
g: torch.Tensor,
beta: torch.Tensor,
scale: float,
initial_state: torch.Tensor,
output_final_state: bool,
use_qk_l2norm_in_kernel: bool = False,
offsets: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
B, T, H, K, V = *k.shape, v.shape[-1]
N = B if offsets is None else len(offsets) - 1
BK, BV = triton.next_power_of_2(K), min(triton.next_power_of_2(V), 8)
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
assert NK == 1, "NK > 1 is not supported yet"
num_stages = 3
num_warps = 1
o = q.new_empty(NK, *v.shape)
if output_final_state:
final_state = q.new_empty(N, H, K, V, dtype=torch.float32)
else:
final_state = None
grid = (NK, NV, N * H)
fused_recurrent_gated_delta_rule_fwd_kernel[grid](
q=q,
k=k,
v=v,
g=g,
beta=beta,
o=o,
h0=initial_state,
ht=final_state,
offsets=offsets,
scale=scale,
T=T,
B=B,
H=H,
K=K,
V=V,
BK=BK,
BV=BV,
IS_BETA_HEADWISE=beta.ndim == v.ndim,
USE_QK_L2NORM_IN_KERNEL=use_qk_l2norm_in_kernel,
num_warps=num_warps,
num_stages=num_stages,
)
o = o.squeeze(0)
return o, final_state
class FusedRecurrentFunction(torch.autograd.Function):
@staticmethod
@input_guard
def forward(
ctx,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
g: torch.Tensor,
beta: torch.Tensor,
scale: float,
initial_state: torch.Tensor,
output_final_state: bool,
offsets: Optional[torch.LongTensor] = None,
use_qk_l2norm_in_kernel: bool = False
):
o, final_state = fused_recurrent_gated_delta_rule_fwd(
q=q,
k=k,
v=v,
g=g,
beta=beta,
scale=scale,
initial_state=initial_state,
output_final_state=output_final_state,
use_qk_l2norm_in_kernel=use_qk_l2norm_in_kernel,
offsets=offsets
)
return o, final_state
@staticmethod
@input_guard
def backward(ctx, do, dht):
raise NotImplementedError(
"Backward pass is not implemented yet and we do not have plans to implement it "
"because we haven't figured out how to compute dg without materializing the full "
"hidden states for all time steps."
)
def fused_recurrent_gated_delta_rule(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
g: torch.Tensor,
beta: torch.Tensor = None,
scale: float = None,
initial_state: torch.Tensor = None,
output_final_state: bool = False,
cu_seqlens: Optional[torch.LongTensor] = None,
use_qk_l2norm_in_kernel: bool = False,
head_first: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
r"""
Args:
q (torch.Tensor):
queries of shape `[B, T, H, K]` if `head_first=False` else `[B, H, T, K]`.
k (torch.Tensor):
keys of shape `[B, T, H, K]` if `head_first=False` else `[B, H, T, K]`.
v (torch.Tensor):
values of shape `[B, T, H, V]` if `head_first=False` else `[B, H, T, V]`.
g (torch.Tensor):
g (decays) of shape `[B, T, H]` if `head_first=False` else `(B, H, T)`.
beta (torch.Tensor):
betas of shape `[B, T, H]` if `head_first=False` else `(B, H, T)`.
scale (Optional[int]):
Scale factor for the RetNet attention scores.
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
initial_state (Optional[torch.Tensor]):
Initial state of shape `[N, H, K, V]` for `N` input sequences.
For equal-length input sequences, `N` equals the batch size `B`.
Default: `None`.
output_final_state (Optional[bool]):
Whether to output the final state of shape `[N, H, K, V]`. Default: `False`.
cu_seqlens (torch.LongTensor):
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
consistent with the FlashAttention API.
Returns:
o (torch.Tensor):
Outputs of shape `[B, T, H, V]` if `head_first=False` else `[B, H, T, V]`.
final_state (torch.Tensor):
Final state of shape `[N, H, K, V]` if `output_final_state=True` else `None`.
Examples::
>>> import torch
>>> import torch.nn.functional as F
>>> from einops import rearrange
>>> from fla.ops.gated_delta_rule import fused_recurrent_gated_delta_rule
# inputs with equal lengths
>>> B, T, H, K, V = 4, 2048, 4, 512, 512
>>> q = torch.randn(B, T, H, K, device='cuda')
>>> k = F.normalize(torch.randn(B, T, H, K, device='cuda'), p=2, dim=-1)
>>> v = torch.randn(B, T, H, V, device='cuda')
>>> g = F.logsigmoid(torch.rand(B, T, H, device='cuda'))
>>> beta = torch.rand(B, T, H, device='cuda').sigmoid()
>>> h0 = torch.randn(B, H, K, V, device='cuda')
>>> o, ht = fused_gated_recurrent_delta_rule(
q, k, v, g, beta,
initial_state=h0,
output_final_state=True,
)
# for variable-length inputs, the batch size `B` is expected to be 1 and `cu_seqlens` is required
>>> q, k, v, g, beta = map(lambda x: rearrange(x, 'b t ... -> 1 (b t) ...'), (q, k, v, g, beta))
# for a batch with 4 sequences, `cu_seqlens` with 5 start/end positions are expected
>>> cu_seqlens = q.new_tensor([0, 2048, 4096, 6144, 8192], dtype=torch.long)
>>> o_var, ht_var = fused_gated_recurrent_delta_rule(
q, k, v, g, beta,
initial_state=h0,
output_final_state=True,
cu_seqlens=cu_seqlens
)
>>> assert o.allclose(o_var.view(o.shape))
>>> assert ht.allclose(ht_var)
"""
if cu_seqlens is not None:
if q.shape[0] != 1:
raise ValueError(
f"The batch size is expected to be 1 rather than {q.shape[0]} when using `cu_seqlens`."
f"Please flatten variable-length inputs before processing."
)
if head_first:
raise RuntimeError(
"Sequences with variable lengths are not supported for head-first mode"
)
if initial_state is not None and initial_state.shape[0] != len(cu_seqlens) - 1:
raise ValueError(
f"The number of initial states is expected to be equal to the number of input sequences, "
f"i.e., {len(cu_seqlens) - 1} rather than {initial_state.shape[0]}."
)
if scale is None:
scale = k.shape[-1] ** -0.5
else:
assert scale > 0, "scale must be positive"
if beta is None:
beta = torch.ones_like(q[..., 0])
if head_first:
q, k, v, g, beta = map(lambda x: rearrange(x, 'b h t ... -> b t h ...'), (q, k, v, g, beta))
o, final_state = FusedRecurrentFunction.apply(
q,
k,
v,
g,
beta,
scale,
initial_state,
output_final_state,
cu_seqlens,
use_qk_l2norm_in_kernel
)
if head_first:
o = rearrange(o, 'b t h v -> b h t v')
return o, final_state