|
|
|
|
|
import torch |
|
from einops import rearrange |
|
|
|
|
|
def delta_rule_recurrence(q, k, v, beta, initial_state=None, output_final_state=True): |
|
orig_dtype = q.dtype |
|
b, h, l, d_k = q.shape |
|
q, k, v, beta = map(lambda x: x.float(), [q, k, v, beta]) |
|
d_v = v.shape[-1] |
|
o = torch.zeros_like(v) |
|
S = torch.zeros(b, h, d_k, d_v).to(v) |
|
q = q * (d_k ** -0.5) |
|
|
|
if beta.ndim < v.ndim: |
|
beta = beta[..., None] |
|
|
|
if initial_state is not None: |
|
S += initial_state |
|
|
|
for i in range(l): |
|
_k = k[:, :, i] |
|
_q = q[:, :, i] |
|
_v = v[:, :, i].clone() |
|
beta_i = beta[:, :, i] |
|
_v = _v - (S.clone() * _k[..., None]).sum(-2) |
|
_v = _v * beta_i |
|
S = S.clone() + _k.unsqueeze(-1) * _v.unsqueeze(-2) |
|
o[:, :, i] = torch.einsum('bhd,bhdm->bhm', _q, S) |
|
S = None if output_final_state is False else S |
|
return o.to(orig_dtype), S |
|
|
|
|
|
def delta_rule_chunkwise(q, k, v, beta, chunk_size=32): |
|
b, h, l, d_k = q.shape |
|
d_v = v.shape[-1] |
|
q = q * (d_k ** -0.5) |
|
v = v * beta[..., None] |
|
k_beta = k * beta[..., None] |
|
|
|
assert l % chunk_size == 0 |
|
|
|
|
|
mask = torch.triu(torch.ones(chunk_size, chunk_size, dtype=torch.bool, device=q.device), diagonal=0) |
|
q, k, v, k_beta = map(lambda x: rearrange(x, 'b h (n c) d -> b h n c d', c=chunk_size), [q, k, v, k_beta]) |
|
attn = -(k_beta @ k.transpose(-1, -2)).masked_fill(mask, 0) |
|
for i in range(1, chunk_size): |
|
attn[..., i, :i] = attn[..., i, :i] + (attn[..., i, :, None].clone() * attn[..., :, :i].clone()).sum(-2) |
|
attn = attn + torch.eye(chunk_size, dtype=torch.float, device=q.device) |
|
|
|
u = attn @ v |
|
w = attn @ k_beta |
|
S = k.new_zeros(b, h, d_k, d_v) |
|
o = torch.zeros_like(v) |
|
mask = torch.triu(torch.ones(chunk_size, chunk_size, dtype=torch.bool, device=q.device), diagonal=1) |
|
for i in range(0, l // chunk_size): |
|
q_i, k_i = q[:, :, i], k[:, :, i] |
|
attn = (q_i @ k_i.transpose(-1, -2)).masked_fill_(mask, 0) |
|
u_i = u[:, :, i] - w[:, :, i] @ S |
|
o_inter = q_i @ S |
|
o[:, :, i] = o_inter + attn @ u_i |
|
S = S + k_i.transpose(-1, -2) @ u_i |
|
|
|
return rearrange(o, 'b h n c d -> b h (n c) d'), S |
|
|
|
|
|
def delta_rule_parallel(q, k, v, beta, BM=128, BN=32): |
|
b, h, l, d_k = q.shape |
|
|
|
q = q * (d_k ** -0.5) |
|
v = v * beta[..., None] |
|
k_beta = k * beta[..., None] |
|
|
|
q, k, v, k_beta = map(lambda x: rearrange(x, 'b h (n c) d -> b h n c d', c=BN), [q, k, v, k_beta]) |
|
mask = torch.triu(torch.ones(BN, BN, dtype=torch.bool, device=q.device), diagonal=0) |
|
T = -(k_beta @ k.transpose(-1, -2)).masked_fill(mask, 0) |
|
for i in range(1, BN): |
|
T[..., i, :i] = T[..., i, :i].clone() + (T[..., i, :, None].clone() * T[..., :, :i].clone()).sum(-2) |
|
T = T + torch.eye(BN, dtype=torch.float, device=q.device) |
|
|
|
mask2 = torch.triu(torch.ones(BN, BN, dtype=torch.bool, device=q.device), diagonal=1) |
|
A_local = (q @ k.transpose(-1, -2)).masked_fill(mask2, 0) @ T |
|
o_intra = A_local @ v |
|
|
|
|
|
k = k - ((k @ k.transpose(-1, -2)).masked_fill(mask, 0) @ T).transpose(-1, -2) @ k_beta |
|
|
|
q = q - A_local @ k_beta |
|
o_intra = A_local @ v |
|
|
|
A = torch.zeros(b, h, l, l, device=q.device) |
|
|
|
q, k, v, k_beta, o_intra = map(lambda x: rearrange(x, 'b h n c d -> b h (n c) d'), [q, k, v, k_beta, o_intra]) |
|
o = torch.empty_like(v) |
|
for i in range(0, l, BM): |
|
q_i = q[:, :, i:i+BM] |
|
o_i = o_intra[:, :, i:i+BM] |
|
|
|
for j in range(i + BM - 2 * BN, i-BN, -BN): |
|
k_j = k[:, :, j:j+BN] |
|
A_ij = q_i @ k_j.transpose(-1, -2) |
|
mask = torch.arange(i, i+BM) >= (j + BN) |
|
A_ij = A_ij.masked_fill_(~mask[:, None].to(A_ij.device), 0) |
|
A[:, :, i:i+BM, j:j+BN] = A_ij |
|
q_i = q_i - A_ij @ k_beta[:, :, j:j+BN] |
|
o_i += A_ij @ v[:, :, j:j+BN] |
|
|
|
for j in range(i - BN, -BN, -BN): |
|
k_j = k[:, :, j:j+BN] |
|
A_ij = q_i @ k_j.transpose(-1, -2) |
|
A[:, :, i:i+BM, j:j+BN] = A_ij |
|
q_i = q_i - A_ij @ k_beta[:, :, j:j+BN] |
|
o_i += A_ij @ v[:, :, j:j+BN] |
|
o[:, :, i:i+BM] = o_i |
|
|
|
for i in range(0, l//BN): |
|
A[:, :, i*BN:i*BN+BN, i*BN:i*BN+BN] = A_local[:, :, i] |
|
|
|
return o, A |
|
|