zaydzuhri's picture
Add files using upload-large-folder tool
e49db55 verified
raw
history blame
20.5 kB
# -*- coding: utf-8 -*-
from __future__ import annotations
import math
import warnings
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.activations import ACT2FN
from transformers.generation import GenerationMixin
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from transformers.utils.deprecation import deprecate_kwarg
from fla.layers.attn import Attention
from fla.layers.gated_deltaproduct import GatedDeltaProduct
from fla.models.gated_deltaproduct.configuration_gated_deltaproduct import GatedDeltaProductConfig
from fla.models.utils import Cache
from fla.modules import FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss, RMSNorm
from fla.modules.activations import swiglu_linear
from fla.modules.layernorm import rms_norm_linear
if TYPE_CHECKING:
from transformers.processing_utils import Unpack
logger = logging.get_logger(__name__)
class GatedDeltaNetMLP(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_ratio: Optional[int] = None,
intermediate_size: Optional[int] = None,
hidden_act: str = "swish",
norm_first: bool = True,
norm_eps: float = 1e-5,
) -> GatedDeltaNetMLP:
super().__init__()
self.hidden_size = hidden_size
# the final number of params is `hidden_ratio * hidden_size^2`
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
if hidden_ratio is None:
hidden_ratio = 4
if intermediate_size is None:
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.norm_first = norm_first
if norm_first:
self.norm = RMSNorm(hidden_size=hidden_size, eps=norm_eps)
self.gate_proj = nn.Linear(
self.hidden_size, self.intermediate_size * 2, bias=False
)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(
self,
x: torch.Tensor,
**kwargs: Unpack[Dict],
) -> torch.Tensor:
if self.norm_first:
x = rms_norm_linear(
x,
self.norm.weight,
self.norm.bias,
self.gate_proj.weight,
self.gate_proj.bias,
)
else:
x = self.gate_proj(x)
gate, y = x.chunk(2, -1)
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
class GatedDeltaProductBlock(nn.Module):
def __init__(self, config: GatedDeltaProductConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
if not config.norm_first:
self.attn_norm = RMSNorm(
hidden_size=config.hidden_size, eps=config.norm_eps
)
if config.attn is not None and layer_idx in config.attn["layers"]:
self.attn = Attention(
hidden_size=config.hidden_size,
num_heads=config.attn["num_heads"],
num_kv_heads=config.attn["num_kv_heads"],
window_size=config.attn["window_size"],
max_position_embeddings=config.max_position_embeddings,
layer_idx=layer_idx,
)
else:
self.attn = GatedDeltaProduct(
mode=config.attn_mode,
hidden_size=config.hidden_size,
expand_v=config.expand_v,
head_dim=config.head_dim,
num_heads=config.num_heads,
use_gate=config.use_gate,
use_forget_gate=config.use_forget_gate,
use_short_conv=config.use_short_conv,
conv_size=config.conv_size,
norm_first=config.norm_first,
norm_eps=config.norm_eps,
allow_neg_eigval=config.allow_neg_eigval,
num_householder=config.num_householder,
layer_idx=layer_idx,
use_beta_conv=config.use_beta_conv
)
if not config.norm_first:
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.mlp = GatedDeltaNetMLP(
hidden_size=config.hidden_size,
hidden_ratio=config.hidden_ratio,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
norm_first=config.norm_first,
norm_eps=config.norm_eps,
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs: Unpack[Dict],
) -> Tuple[
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
]:
residual = hidden_states
if hasattr(self, "attn_norm"):
hidden_states = self.attn_norm(hidden_states)
hidden_states, attentions, past_key_values = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
**kwargs,
)
if hasattr(self, "mlp_norm"):
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
else:
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.mlp(hidden_states, **kwargs)
hidden_states = residual + hidden_states
outputs = (hidden_states, attentions, past_key_values)
return outputs
class GatedDeltaProductPreTrainedModel(PreTrainedModel):
config_class = GatedDeltaProductConfig
supports_gradient_checkpointing = True
_no_split_modules = ["GatedDeltaNetBlock"]
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(
self,
module: nn.Module,
rescale_prenorm_residual: bool = True,
num_residuals_per_layer: int = 2,
):
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["o_proj.weight", "down_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
with torch.no_grad():
p /= math.sqrt(
num_residuals_per_layer * self.config.num_hidden_layers
)
class GatedDeltaProductModel(GatedDeltaProductPreTrainedModel):
def __init__(self, config: GatedDeltaProductConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embeddings = nn.Embedding(
config.vocab_size, config.hidden_size, self.padding_idx
)
self.layers = nn.ModuleList(
[
GatedDeltaProductBlock(config, layer_idx)
for layer_idx in range(config.num_hidden_layers)
]
)
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs: Unpack[Dict],
) -> Union[Tuple, BaseModelOutputWithPast]:
if output_attentions:
warnings.warn(
"`GatedDeltaNetModel` does not `output_attentions` now, setting it to `False`.",
stacklevel=2,
)
output_attentions = False
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = (
use_cache
if use_cache is not None
else (self.config.use_cache if not self.training else False)
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time"
)
if input_ids is None and inputs_embeds is None:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
hidden_states = inputs_embeds
if use_cache and not isinstance(past_key_values, Cache):
past_key_values = Cache.from_legacy_cache(past_key_values)
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_attns = () if output_attentions else None
for layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
hidden_states, attentions, past_key_values = (
self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
past_key_values,
use_cache,
output_attentions,
**kwargs,
)
)
else:
hidden_states, attentions, past_key_values = layer(
hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
**kwargs,
)
if output_attentions:
all_attns += (attentions,)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return tuple(
i
for i in [
hidden_states,
past_key_values,
all_hidden_states,
all_attns,
]
if i is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_attns,
)
class GatedDeltaProductForCausalLM(GatedDeltaProductPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = GatedDeltaProductModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embeddings
def set_input_embeddings(self, value):
self.model.embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def generate(self, *args, **kwargs):
try:
return super().generate(*args, **kwargs)
except AttributeError as exception:
if "past_key_values" in str(exception):
raise AttributeError(
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
f"which is not supported for {self.__class__.__name__}. "
f"Try another generation strategy instead. "
f"For the available generation strategies, check this doc: "
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
)
else:
raise exception
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: bool = True,
num_logits_to_keep: Optional[int] = None,
logits_to_keep: Optional[int] = None,
**kwargs,
):
# only last token for `inputs_ids` if the `past_key_values` is passed along is not empty.
if past_key_values is not None and len(past_key_values) > 0:
input_ids = input_ids[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard.
# Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {"input_ids": input_ids.contiguous()}
if logits_to_keep is not None:
model_inputs['logits_to_keep'] = logits_to_keep
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
"num_logits_to_keep": num_logits_to_keep,
}
)
return model_inputs
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
num_logits_to_keep: Optional[int] = 0,
logits_to_keep: Optional[int] = 0,
**kwargs: Unpack[Dict],
) -> Union[Tuple, CausalLMOutputWithPast]:
num_logits_to_keep = 0 if num_logits_to_keep is None else num_logits_to_keep
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
kwargs.pop("num_items_in_batch", None)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs,
)
hidden_states = outputs[0]
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
loss, logits = None, None
if not fuse_linear_and_cross_entropy or labels is None:
logits = self.lm_head(hidden_states if logits_to_keep is None else hidden_states[:, -logits_to_keep:])
if labels is not None:
if self.config.fuse_cross_entropy:
if fuse_linear_and_cross_entropy:
loss_fct = FusedLinearCrossEntropyLoss()
else:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Enable model parallelism
labels = labels.to(hidden_states.device)
labels = torch.cat(
(
labels[..., 1:],
torch.full_like(labels[:, :1], loss_fct.ignore_index),
),
1,
)
if fuse_linear_and_cross_entropy:
loss = loss_fct(
hidden_states.view(-1, self.config.hidden_size),
labels.view(-1),
self.lm_head.weight,
self.lm_head.bias,
)
else:
loss = loss_fct(
logits.view(-1, self.config.vocab_size), labels.view(-1)
)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss, *output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)