File size: 9,745 Bytes
f72219a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
from typing import Optional, Tuple
import torch
import triton
import triton.language as tl
from fla.ops.utils.op import exp
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, input_guard, use_cuda_graph
@triton.heuristics({
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
'USE_OFFSETS': lambda args: args['offsets'] is not None
})
@triton.autotune(
configs=[
triton.Config({'BV': BV}, num_warps=num_warps, num_stages=num_stages)
for BV in [16, 32, 64]
for num_warps in [2, 4, 8, 16]
for num_stages in [2, 3, 4]
],
key=['BK'],
use_cuda_graph=use_cuda_graph,
)
@triton.jit(do_not_specialize=['T'])
def fused_recurrent_dplr_delta_rule_fwd_kernel(
q,
k,
v,
a,
b,
gk,
o,
h0,
ht,
offsets,
scale,
T,
B: tl.constexpr,
H: tl.constexpr,
K: tl.constexpr,
V: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
REVERSE: tl.constexpr,
USE_INITIAL_STATE: tl.constexpr,
STORE_FINAL_STATE: tl.constexpr,
USE_OFFSETS: tl.constexpr,
HEAD_FIRST: tl.constexpr
):
i_v, i_nh = tl.program_id(0).to(tl.int64), tl.program_id(1).to(tl.int64)
i_n, i_h = i_nh // H, i_nh % H
if USE_OFFSETS:
bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64)
T = eos - bos
else:
bos, eos = i_n * T, i_n * T + T
o_k = tl.arange(0, BK)
o_v = i_v * BV + tl.arange(0, BV)
if HEAD_FIRST:
p_q = q + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k
p_k = k + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k
p_a = a + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k
p_b = b + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k
p_gk = gk + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k
p_v = v + i_nh * T*V + ((T-1) * V if REVERSE else 0) + o_v
p_o = o + i_nh * T*V + ((T-1) * V if REVERSE else 0) + o_v
else:
p_q = q + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k
p_k = k + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k
p_a = a + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k
p_b = b + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k
p_gk = gk + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k
p_v = v + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + o_v
p_o = o + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + o_v
mask_k = o_k < K
mask_v = o_v < V
mask_h = mask_k[None, :] & mask_v[:, None]
b_h = tl.zeros([BV, BK], dtype=tl.float32)
if USE_INITIAL_STATE:
p_h0 = h0 + i_nh * K*V + o_k[None, :] * V + o_v[:, None]
b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32)
for _ in range(0, T):
b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32) * scale
b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32)
b_a = tl.load(p_a, mask=mask_k, other=0).to(tl.float32)
b_b = tl.load(p_b, mask=mask_k, other=0).to(tl.float32)
b_gk = tl.load(p_gk, mask=mask_k, other=0).to(tl.float32)
b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32)
tmp = tl.sum(b_h * b_a[None, :], axis=1)
b_h = exp(b_gk)[None, :] * b_h + (tmp[:, None] * b_b[None, :] + b_k[None, :] * b_v[:, None])
b_o = tl.sum(b_h * b_q[None, :], axis=1)
tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_v)
p_q += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
p_k += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
p_a += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
p_b += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
p_gk += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
p_v += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
p_o += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
if STORE_FINAL_STATE:
p_ht = ht + i_nh * K*V + o_k[None, :] * V + o_v[:, None]
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask_h)
def fused_recurrent_dplr_delta_rule_fwd(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
a: torch.Tensor,
b: torch.Tensor,
gk: torch.Tensor,
scale: Optional[float] = 1.0,
initial_state: Optional[torch.Tensor] = None,
output_final_state: bool = False,
reverse: bool = False,
offsets: Optional[torch.LongTensor] = None,
head_first: bool = True
):
if head_first:
B, H, T, K, V = *k.shape, v.shape[-1]
else:
B, T, H, K, V = *k.shape, v.shape[-1]
N = B if offsets is None else len(offsets) - 1
BK = triton.next_power_of_2(K)
h0 = initial_state
if output_final_state:
ht = q.new_empty(N, H, K, V, dtype=torch.float32)
else:
ht = None
o = torch.empty_like(v)
def grid(meta): return (triton.cdiv(V, meta['BV']), N * H)
fused_recurrent_dplr_delta_rule_fwd_kernel[grid](
q,
k,
v,
a,
b,
gk,
o,
h0,
ht,
offsets,
scale,
T=T,
B=B,
H=H,
K=K,
V=V,
BK=BK,
REVERSE=reverse,
HEAD_FIRST=head_first
)
return o, ht
class FusedRecurrentDPLRDeltaRuleFunction(torch.autograd.Function):
@staticmethod
@input_guard
@autocast_custom_fwd
def forward(
ctx,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
a: torch.Tensor,
b: torch.Tensor,
gk: torch.Tensor,
scale: Optional[float] = 1.0,
initial_state: Optional[torch.Tensor] = None,
output_final_state: bool = False,
reverse: bool = False,
offsets: Optional[torch.LongTensor] = None,
head_first: bool = False
):
o, ht = fused_recurrent_dplr_delta_rule_fwd(
q=q,
k=k,
v=v,
a=a,
b=b,
gk=gk,
scale=scale,
initial_state=initial_state,
output_final_state=output_final_state,
reverse=reverse,
offsets=offsets,
head_first=head_first
)
return o, ht
@staticmethod
@input_guard
@autocast_custom_bwd
def backward(ctx, do, dht):
raise NotImplementedError(
"Backward pass for fused_recurrent_dplr_delta_rule is not implemented and will not be supported. "
"This kernel is only for inference. "
"For training, please use `chunk_dplr_delta_rule`."
)
def fused_recurrent_dplr_delta_rule(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
a: torch.Tensor,
b: torch.Tensor,
gk: torch.Tensor,
scale: Optional[float] = 1.0,
initial_state: Optional[torch.Tensor] = None,
output_final_state: bool = False,
reverse: bool = False,
cu_seqlens: Optional[torch.Tensor] = None,
head_first: bool = False
) -> Tuple[torch.Tensor, torch.Tensor]:
r"""
This function computes the recurrence S_t = S_t @ (I + a_t b_t^T) + v_t k_t^T in a recurrent manner.
Args:
q (torch.Tensor):
queries of shape `[B, H, T, K]`
k (torch.Tensor):
keys of shape `[B, H, T, K]`
v (torch.Tensor):
values of shape `[B, H, T, V]`
a (torch.Tensor):
as of shape `[B, H, T, K]`
b (torch.Tensor):
bs of shape `[B, H, T, K]`
gk (torch.Tensor):
gk of shape `[B, H, T, K]`
scale (Optional[int]):
Scale factor for the RetNet attention scores.
If None, it will default to `1 / sqrt(K)`. Default: `1.0`.
initial_state (Optional[torch.Tensor]):
Initial state of shape `[B, H, K, V]`. Default: `None`.
output_final_state (Optional[bool]):
Whether to output the final state of shape `[B, H, K, V]`. Default: `False`.
reverse (Optional[bool]):
If `True`, process the state passing in reverse order. Default: `False`.
cu_seqlens (Optional[torch.Tensor]):
Cumulative sequence lengths of shape `[N + 1]` used for variable-length training,
consistent with the FlashAttention API.
head_first (Optional[bool]):
Whether the inputs are in the head-first format, which is not supported for variable-length inputs.
Default: `False`.
"""
if cu_seqlens is not None:
if q.shape[0] != 1:
raise ValueError(f"The batch size is expected to be 1 rather than {q.shape[0]} when using `cu_seqlens`."
f"Please flatten variable-length inputs before processing.")
if head_first:
raise RuntimeError("Sequences with variable lengths are not supported for head-first mode")
if initial_state is not None and initial_state.shape[0] != len(cu_seqlens) - 1:
raise ValueError(f"The number of initial states is expected to be equal to the number of input sequences, "
f"i.e., {len(cu_seqlens) - 1} rather than {initial_state.shape[0]}.")
if scale is None:
scale = q.shape[-1] ** -0.5
else:
assert scale > 0, "scale must be positive"
o, final_state = FusedRecurrentDPLRDeltaRuleFunction.apply(
q,
k,
v,
a,
b,
gk,
scale,
initial_state,
output_final_state,
reverse,
cu_seqlens,
head_first
)
return o, final_state
|