File size: 9,745 Bytes
f72219a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang

from typing import Optional, Tuple

import torch
import triton
import triton.language as tl

from fla.ops.utils.op import exp
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, input_guard, use_cuda_graph


@triton.heuristics({
    'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
    'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
    'USE_OFFSETS': lambda args: args['offsets'] is not None
})
@triton.autotune(
    configs=[
        triton.Config({'BV': BV}, num_warps=num_warps, num_stages=num_stages)
        for BV in [16, 32, 64]
        for num_warps in [2, 4, 8, 16]
        for num_stages in [2, 3, 4]
    ],
    key=['BK'],
    use_cuda_graph=use_cuda_graph,
)
@triton.jit(do_not_specialize=['T'])
def fused_recurrent_dplr_delta_rule_fwd_kernel(
    q,
    k,
    v,
    a,
    b,
    gk,
    o,
    h0,
    ht,
    offsets,
    scale,
    T,
    B: tl.constexpr,
    H: tl.constexpr,
    K: tl.constexpr,
    V: tl.constexpr,
    BK: tl.constexpr,
    BV: tl.constexpr,
    REVERSE: tl.constexpr,
    USE_INITIAL_STATE: tl.constexpr,
    STORE_FINAL_STATE: tl.constexpr,
    USE_OFFSETS: tl.constexpr,
    HEAD_FIRST: tl.constexpr
):
    i_v, i_nh = tl.program_id(0).to(tl.int64), tl.program_id(1).to(tl.int64)
    i_n, i_h = i_nh // H, i_nh % H

    if USE_OFFSETS:
        bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64)
        T = eos - bos
    else:
        bos, eos = i_n * T, i_n * T + T

    o_k = tl.arange(0, BK)
    o_v = i_v * BV + tl.arange(0, BV)
    if HEAD_FIRST:
        p_q = q + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k
        p_k = k + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k
        p_a = a + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k
        p_b = b + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k
        p_gk = gk + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k
        p_v = v + i_nh * T*V + ((T-1) * V if REVERSE else 0) + o_v
        p_o = o + i_nh * T*V + ((T-1) * V if REVERSE else 0) + o_v

    else:
        p_q = q + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k
        p_k = k + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k
        p_a = a + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k
        p_b = b + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k
        p_gk = gk + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k
        p_v = v + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + o_v
        p_o = o + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + o_v

    mask_k = o_k < K
    mask_v = o_v < V
    mask_h = mask_k[None, :] & mask_v[:, None]
    b_h = tl.zeros([BV, BK], dtype=tl.float32)

    if USE_INITIAL_STATE:
        p_h0 = h0 + i_nh * K*V + o_k[None, :] * V + o_v[:, None]
        b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32)

    for _ in range(0, T):
        b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32) * scale
        b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32)
        b_a = tl.load(p_a, mask=mask_k, other=0).to(tl.float32)
        b_b = tl.load(p_b, mask=mask_k, other=0).to(tl.float32)
        b_gk = tl.load(p_gk, mask=mask_k, other=0).to(tl.float32)
        b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32)

        tmp = tl.sum(b_h * b_a[None, :], axis=1)
        b_h = exp(b_gk)[None, :] * b_h + (tmp[:, None] * b_b[None, :] + b_k[None, :] * b_v[:, None])
        b_o = tl.sum(b_h * b_q[None, :], axis=1)

        tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_v)
        p_q += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
        p_k += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
        p_a += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
        p_b += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
        p_gk += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
        p_v += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
        p_o += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V

    if STORE_FINAL_STATE:
        p_ht = ht + i_nh * K*V + o_k[None, :] * V + o_v[:, None]
        tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask_h)


def fused_recurrent_dplr_delta_rule_fwd(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    a: torch.Tensor,
    b: torch.Tensor,
    gk: torch.Tensor,
    scale: Optional[float] = 1.0,
    initial_state: Optional[torch.Tensor] = None,
    output_final_state: bool = False,
    reverse: bool = False,
    offsets: Optional[torch.LongTensor] = None,
    head_first: bool = True
):
    if head_first:
        B, H, T, K, V = *k.shape, v.shape[-1]
    else:
        B, T, H, K, V = *k.shape, v.shape[-1]
    N = B if offsets is None else len(offsets) - 1
    BK = triton.next_power_of_2(K)

    h0 = initial_state
    if output_final_state:
        ht = q.new_empty(N, H, K, V, dtype=torch.float32)
    else:
        ht = None
    o = torch.empty_like(v)

    def grid(meta): return (triton.cdiv(V, meta['BV']), N * H)
    fused_recurrent_dplr_delta_rule_fwd_kernel[grid](
        q,
        k,
        v,
        a,
        b,
        gk,
        o,
        h0,
        ht,
        offsets,
        scale,
        T=T,
        B=B,
        H=H,
        K=K,
        V=V,
        BK=BK,
        REVERSE=reverse,
        HEAD_FIRST=head_first
    )
    return o, ht


class FusedRecurrentDPLRDeltaRuleFunction(torch.autograd.Function):

    @staticmethod
    @input_guard
    @autocast_custom_fwd
    def forward(
        ctx,
        q: torch.Tensor,
        k: torch.Tensor,
        v: torch.Tensor,
        a: torch.Tensor,
        b: torch.Tensor,
        gk: torch.Tensor,
        scale: Optional[float] = 1.0,
        initial_state: Optional[torch.Tensor] = None,
        output_final_state: bool = False,
        reverse: bool = False,
        offsets: Optional[torch.LongTensor] = None,
        head_first: bool = False
    ):
        o, ht = fused_recurrent_dplr_delta_rule_fwd(
            q=q,
            k=k,
            v=v,
            a=a,
            b=b,
            gk=gk,
            scale=scale,
            initial_state=initial_state,
            output_final_state=output_final_state,
            reverse=reverse,
            offsets=offsets,
            head_first=head_first
        )
        return o, ht

    @staticmethod
    @input_guard
    @autocast_custom_bwd
    def backward(ctx, do, dht):
        raise NotImplementedError(
            "Backward pass for fused_recurrent_dplr_delta_rule is not implemented and will not be supported. "
            "This kernel is only for inference. "
            "For training, please use `chunk_dplr_delta_rule`."
        )


def fused_recurrent_dplr_delta_rule(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    a: torch.Tensor,
    b: torch.Tensor,
    gk: torch.Tensor,
    scale: Optional[float] = 1.0,
    initial_state: Optional[torch.Tensor] = None,
    output_final_state: bool = False,
    reverse: bool = False,
    cu_seqlens: Optional[torch.Tensor] = None,
    head_first: bool = False
) -> Tuple[torch.Tensor, torch.Tensor]:
    r"""
    This function computes the recurrence S_t = S_t @ (I + a_t b_t^T) + v_t k_t^T in a recurrent manner.

    Args:
        q (torch.Tensor):
            queries of shape `[B, H, T, K]`
        k (torch.Tensor):
            keys of shape `[B, H, T, K]`
        v (torch.Tensor):
            values of shape `[B, H, T, V]`
        a (torch.Tensor):
            as of shape `[B, H, T, K]`
        b (torch.Tensor):
             bs of shape `[B, H, T, K]`
        gk (torch.Tensor):
            gk of shape `[B, H, T, K]`
        scale (Optional[int]):
            Scale factor for the RetNet attention scores.
            If None, it will default to `1 / sqrt(K)`. Default: `1.0`.
        initial_state (Optional[torch.Tensor]):
            Initial state of shape `[B, H, K, V]`. Default: `None`.
        output_final_state (Optional[bool]):
            Whether to output the final state of shape `[B, H, K, V]`. Default: `False`.
        reverse (Optional[bool]):
            If `True`, process the state passing in reverse order. Default: `False`.
        cu_seqlens (Optional[torch.Tensor]):
            Cumulative sequence lengths of shape `[N + 1]` used for variable-length training,
            consistent with the FlashAttention API.
        head_first (Optional[bool]):
            Whether the inputs are in the head-first format, which is not supported for variable-length inputs.
            Default: `False`.
    """
    if cu_seqlens is not None:
        if q.shape[0] != 1:
            raise ValueError(f"The batch size is expected to be 1 rather than {q.shape[0]} when using `cu_seqlens`."
                             f"Please flatten variable-length inputs before processing.")
        if head_first:
            raise RuntimeError("Sequences with variable lengths are not supported for head-first mode")
        if initial_state is not None and initial_state.shape[0] != len(cu_seqlens) - 1:
            raise ValueError(f"The number of initial states is expected to be equal to the number of input sequences, "
                             f"i.e., {len(cu_seqlens) - 1} rather than {initial_state.shape[0]}.")
    if scale is None:
        scale = q.shape[-1] ** -0.5
    else:
        assert scale > 0, "scale must be positive"
    o, final_state = FusedRecurrentDPLRDeltaRuleFunction.apply(
        q,
        k,
        v,
        a,
        b,
        gk,
        scale,
        initial_state,
        output_final_state,
        reverse,
        cu_seqlens,
        head_first
    )
    return o, final_state