File size: 7,528 Bytes
f72219a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang

from typing import Optional, Tuple

import torch
import triton
import triton.language as tl

from fla.ops.common.utils import prepare_chunk_offsets
from fla.ops.utils.op import exp
from fla.utils import check_shared_mem, use_cuda_graph


@triton.heuristics({
    'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
    'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
    'USE_OFFSETS': lambda args: args['offsets'] is not None,
})
@triton.autotune(
    configs=[
        triton.Config({}, num_warps=num_warps, num_stages=num_stages)
        for num_warps in [2, 4, 8, 16, 32]
        for num_stages in [2, 3, 4]
    ],
    key=['BT', 'BK', 'BV'],
    use_cuda_graph=use_cuda_graph,
)
@triton.jit(do_not_specialize=['T'])
def chunk_dplr_fwd_kernel_h(
    kg,
    v,
    w,
    bg,
    u,
    v_new,
    gk,
    h,
    h0,
    ht,
    offsets,
    chunk_offsets,
    T,
    H: tl.constexpr,
    K: tl.constexpr,
    V: tl.constexpr,
    BT: tl.constexpr,
    BC: tl.constexpr,
    BK: tl.constexpr,
    BV: tl.constexpr,
    NT: tl.constexpr,
    USE_INITIAL_STATE: tl.constexpr,
    STORE_FINAL_STATE: tl.constexpr,
    USE_OFFSETS: tl.constexpr,
    HEAD_FIRST: tl.constexpr,
):
    i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
    i_n, i_h = i_nh // H, i_nh % H
    if USE_OFFSETS:
        bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
        T = eos - bos
        NT = tl.cdiv(T, BT)
        boh = tl.load(chunk_offsets + i_n).to(tl.int32)
    else:
        bos, eos = i_n * T, i_n * T + T
        NT = tl.cdiv(T, BT)
        boh = i_n * NT

    # [BK, BV]
    b_h = tl.zeros([BK, BV], dtype=tl.float32)
    if USE_INITIAL_STATE:
        p_h0 = tl.make_block_ptr(h0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
        b_h = tl.load(p_h0, boundary_check=(0, 1)).to(tl.float32)

    for i_t in range(NT):
        if HEAD_FIRST:
            p_h = tl.make_block_ptr(h + (i_nh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
        else:
            p_h = tl.make_block_ptr(h + ((boh + i_t) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
        tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1))

        b_hc = tl.zeros([BK, BV], dtype=tl.float32)
        # since we need to make all DK in the SRAM. we face serve SRAM memory burden. By subchunking we allievate such burden
        for i_c in range(tl.cdiv(min(BT, T - i_t * BT), BC)):
            if HEAD_FIRST:
                p_kg = tl.make_block_ptr(kg + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
                p_bg = tl.make_block_ptr(bg + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
                p_w = tl.make_block_ptr(w + i_nh * T*K, (T, K), (K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0))
                p_v = tl.make_block_ptr(v + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
                p_u = tl.make_block_ptr(u + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
                p_v_new = tl.make_block_ptr(v_new+i_nh*T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
            else:
                p_kg = tl.make_block_ptr(kg+(bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
                p_bg = tl.make_block_ptr(bg+(bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
                p_w = tl.make_block_ptr(w+(bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0))
                p_v = tl.make_block_ptr(v+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
                p_u = tl.make_block_ptr(u+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
                p_v_new = tl.make_block_ptr(v_new+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT+i_c*BC, i_v * BV), (BC, BV), (1, 0))
            # [BK, BC]
            b_kg = tl.load(p_kg, boundary_check=(0, 1))
            b_v = tl.load(p_v, boundary_check=(0, 1))
            b_w = tl.load(p_w, boundary_check=(0, 1))
            b_bg = tl.load(p_bg, boundary_check=(0, 1))
            b_v2 = tl.dot(b_w, b_h.to(b_w.dtype)) + tl.load(p_u, boundary_check=(0, 1))
            b_hc += tl.dot(b_kg, b_v)
            b_hc += tl.dot(b_bg.to(b_hc.dtype), b_v2)
            tl.store(p_v_new, b_v2.to(p_v_new.dtype.element_ty), boundary_check=(0, 1))

        last_idx = min((i_t + 1) * BT, T) - 1
        if HEAD_FIRST:
            b_g_last = tl.load(gk + i_nh * T * K + last_idx * K + tl.arange(0, BK), mask=tl.arange(0, BK) < K).to(tl.float32)
        else:
            b_g_last = tl.load(gk + (bos + last_idx) * H * K + i_h * K +
                               tl.arange(0, BK), mask=tl.arange(0, BK) < K).to(tl.float32)
        b_h *= exp(b_g_last[:, None])
        b_h += b_hc

    if STORE_FINAL_STATE:
        p_ht = tl.make_block_ptr(ht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
        tl.store(p_ht, b_h.to(p_ht.dtype.element_ty, fp_downcast_rounding="rtne"), boundary_check=(0, 1))


def chunk_dplr_fwd_h(
    kg: torch.Tensor,
    v: torch.Tensor,
    w: torch.Tensor,
    u: torch.Tensor,
    bg: torch.Tensor,
    gk: torch.Tensor,
    initial_state: Optional[torch.Tensor] = None,
    output_final_state: bool = False,
    offsets: Optional[torch.LongTensor] = None,
    indices: Optional[torch.LongTensor] = None,
    head_first: bool = True,
    chunk_size: int = 64
) -> Tuple[torch.Tensor, torch.Tensor]:
    if head_first:
        B, H, T, K, V = *kg.shape, u.shape[-1]
    else:
        B, T, H, K, V = *kg.shape, u.shape[-1]
    BT = min(chunk_size, max(triton.next_power_of_2(T), 16))
    # N: the actual number of sequences in the batch with either equal or variable lengths
    if offsets is None:
        N, NT, chunk_offsets = B, triton.cdiv(T, BT), None
    else:
        N, NT, chunk_offsets = len(offsets) - 1, len(indices), prepare_chunk_offsets(offsets, BT)
    BK = triton.next_power_of_2(K)
    assert BK <= 256, "current kernel does not support head dimension larger than 256."
    # H100 can have larger block size

    if check_shared_mem('hopper', kg.device.index):
        BV = 64
        BC = 64 if K <= 128 else 32
    elif check_shared_mem('ampere', kg.device.index):  # A100
        BV = 32
        BC = 32
    else:
        BV = 16
        BC = 16

    BC = min(BT, BC)
    NK = triton.cdiv(K, BK)
    NV = triton.cdiv(V, BV)
    assert NK == 1, 'NK > 1 is not supported because it involves time-consuming synchronization'

    if head_first:
        h = kg.new_empty(B, H, NT, K, V)
    else:
        h = kg.new_empty(B, NT, H, K, V)
    final_state = kg.new_empty(N, H, K, V, dtype=torch.float32) if output_final_state else None
    v_new = torch.empty_like(u)
    grid = (NK, NV, N * H)
    chunk_dplr_fwd_kernel_h[grid](
        kg=kg,
        v=v,
        w=w,
        bg=bg,
        u=u,
        v_new=v_new,
        h=h,
        gk=gk,
        h0=initial_state,
        ht=final_state,
        offsets=offsets,
        chunk_offsets=chunk_offsets,
        T=T,
        H=H,
        K=K,
        V=V,
        BT=BT,
        BC=BC,
        BK=BK,
        BV=BV,
        NT=NT,
        HEAD_FIRST=head_first
    )
    return h, v_new, final_state