Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- fla/models/abc/__pycache__/configuration_abc.cpython-312.pyc +0 -0
- fla/models/abc/__pycache__/modeling_abc.cpython-312.pyc +0 -0
- fla/models/abc/configuration_abc.py +91 -0
- fla/models/bitnet/__pycache__/__init__.cpython-312.pyc +0 -0
- fla/models/delta_net/__pycache__/modeling_delta_net.cpython-312.pyc +0 -0
- fla/models/delta_net/modeling_delta_net.py +415 -0
- fla/models/forgetting_transformer/__pycache__/configuration_forgetting_transformer.cpython-312.pyc +0 -0
- fla/models/forgetting_transformer/__pycache__/modeling_forgetting_transformer.cpython-312.pyc +0 -0
- fla/models/forgetting_transformer/configuration_forgetting_transformer.py +68 -0
- fla/models/gated_deltanet/__init__.py +12 -0
- fla/models/gated_deltanet/__pycache__/__init__.cpython-312.pyc +0 -0
- fla/models/gated_deltanet/__pycache__/modeling_gated_deltanet.cpython-312.pyc +0 -0
- fla/models/gated_deltaproduct/__pycache__/modeling_gated_deltaproduct.cpython-312.pyc +0 -0
- fla/models/gla/__pycache__/__init__.cpython-312.pyc +0 -0
- fla/models/gsa/__init__.py +13 -0
- fla/models/gsa/__pycache__/__init__.cpython-312.pyc +0 -0
- fla/models/gsa/__pycache__/configuration_gsa.cpython-312.pyc +0 -0
- fla/models/gsa/__pycache__/modeling_gsa.cpython-312.pyc +0 -0
- fla/models/hgrn/__pycache__/configuration_hgrn.cpython-312.pyc +0 -0
- fla/models/hgrn/__pycache__/modeling_hgrn.cpython-312.pyc +0 -0
- fla/models/hgrn2/__pycache__/configuration_hgrn2.cpython-312.pyc +0 -0
- fla/models/hgrn2/__pycache__/modeling_hgrn2.cpython-312.pyc +0 -0
- fla/models/hgrn2/configuration_hgrn2.py +91 -0
- fla/models/lightnet/__pycache__/configuration_lightnet.cpython-312.pyc +0 -0
- fla/models/lightnet/__pycache__/modeling_lightnet.cpython-312.pyc +0 -0
- fla/models/mamba/__pycache__/configuration_mamba.cpython-312.pyc +0 -0
- fla/models/mamba/__pycache__/modeling_mamba.cpython-312.pyc +0 -0
- fla/models/mamba2/__pycache__/configuration_mamba2.cpython-312.pyc +0 -0
- fla/models/mamba2/__pycache__/modeling_mamba2.cpython-312.pyc +0 -0
- fla/models/nsa/__pycache__/__init__.cpython-312.pyc +0 -0
- fla/models/nsa/__pycache__/modeling_nsa.cpython-312.pyc +0 -0
- fla/models/retnet/__pycache__/__init__.cpython-312.pyc +0 -0
- fla/models/retnet/__pycache__/configuration_retnet.cpython-312.pyc +0 -0
- fla/models/retnet/__pycache__/modeling_retnet.cpython-312.pyc +0 -0
- fla/models/rwkv6/__pycache__/__init__.cpython-312.pyc +0 -0
- fla/models/samba/__pycache__/__init__.cpython-312.pyc +0 -0
- fla/models/samba/__pycache__/configuration_samba.cpython-312.pyc +0 -0
- fla/models/samba/__pycache__/modeling_samba.cpython-312.pyc +0 -0
- fla/models/transformer/__pycache__/__init__.cpython-312.pyc +0 -0
- fla/models/transformer/__pycache__/configuration_transformer.cpython-312.pyc +0 -0
- fla/models/transformer/__pycache__/modeling_transformer.cpython-312.pyc +0 -0
- fla/models/transformer/modeling_transformer.py +406 -0
- fla/models/transformer_mtp/__pycache__/configuration_transformer.cpython-312.pyc +0 -0
- fla/models/transformer_mtp/__pycache__/modeling_transformer.cpython-312.pyc +0 -0
- fla/models/transformer_mtp/configuration_transformer.py +76 -0
- fla/models/transformer_top/__pycache__/__init__.cpython-312.pyc +0 -0
- fla/modules/__pycache__/__init__.cpython-312.pyc +0 -0
- fla/modules/__pycache__/activations.cpython-312.pyc +0 -0
- fla/modules/__pycache__/convolution.cpython-312.pyc +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tb/20250722-0737/wandb/run-20250722_073713-mtp_transformer-mtp.340M.batch16.seqlen4096.context4096.warmup1000.update1.steps100000.lr3e-4.cosine-202507220732/run-mtp_transformer-mtp.340M.batch16.seqlen4096.context4096.warmup1000.update1.steps100000.lr3e-4.cosine-202507220732.wandb filter=lfs diff=lfs merge=lfs -text
|
fla/models/abc/__pycache__/configuration_abc.cpython-312.pyc
ADDED
Binary file (3.61 kB). View file
|
|
fla/models/abc/__pycache__/modeling_abc.cpython-312.pyc
ADDED
Binary file (18.4 kB). View file
|
|
fla/models/abc/configuration_abc.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from typing import Dict, Optional
|
4 |
+
|
5 |
+
from transformers.configuration_utils import PretrainedConfig
|
6 |
+
|
7 |
+
|
8 |
+
class ABCConfig(PretrainedConfig):
|
9 |
+
|
10 |
+
model_type = 'abc'
|
11 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
hidden_size: int = 2048,
|
16 |
+
gate_low_rank_dim: int = 16,
|
17 |
+
clamp_min: float = -32,
|
18 |
+
clamp_max: float = 32,
|
19 |
+
hidden_ratio: Optional[int] = 4,
|
20 |
+
intermediate_size: Optional[int] = None,
|
21 |
+
num_hidden_layers: int = 24,
|
22 |
+
num_heads: int = 4,
|
23 |
+
num_slots: Optional[int] = 64,
|
24 |
+
use_short_conv: bool = False,
|
25 |
+
conv_size: int = 4,
|
26 |
+
exapnd_k: float = 0.5,
|
27 |
+
exapnd_v: float = 1,
|
28 |
+
hidden_act: str = "swish",
|
29 |
+
max_position_embeddings: int = 2048,
|
30 |
+
elementwise_affine: Optional[bool] = True,
|
31 |
+
norm_eps: float = 1e-6,
|
32 |
+
use_rope: bool = True,
|
33 |
+
attn: Optional[Dict] = None,
|
34 |
+
use_cache: bool = True,
|
35 |
+
pad_token_id: int = None,
|
36 |
+
bos_token_id: int = 1,
|
37 |
+
eos_token_id: int = 2,
|
38 |
+
tie_word_embeddings: bool = False,
|
39 |
+
initializer_range: float = 0.006,
|
40 |
+
fuse_norm: bool = True,
|
41 |
+
fuse_swiglu: bool = True,
|
42 |
+
fuse_cross_entropy: bool = True,
|
43 |
+
vocab_size: int = 32000,
|
44 |
+
**kwargs
|
45 |
+
):
|
46 |
+
self.hidden_size = hidden_size
|
47 |
+
self.gate_low_rank_dim = gate_low_rank_dim
|
48 |
+
self.clamp_min = clamp_min
|
49 |
+
self.clamp_max = clamp_max
|
50 |
+
self.hidden_ratio = hidden_ratio
|
51 |
+
self.intermediate_size = intermediate_size
|
52 |
+
self.num_hidden_layers = num_hidden_layers
|
53 |
+
self.num_heads = num_heads
|
54 |
+
self.num_slots = num_slots
|
55 |
+
self.use_short_conv = use_short_conv
|
56 |
+
self.conv_size = conv_size
|
57 |
+
self.expand_k = exapnd_k
|
58 |
+
self.expand_v = exapnd_v
|
59 |
+
self.hidden_act = hidden_act
|
60 |
+
self.max_position_embeddings = max_position_embeddings
|
61 |
+
self.elementwise_affine = elementwise_affine
|
62 |
+
self.norm_eps = norm_eps
|
63 |
+
self.use_rope = use_rope
|
64 |
+
self.attn = attn
|
65 |
+
self.use_cache = use_cache
|
66 |
+
self.initializer_range = initializer_range
|
67 |
+
|
68 |
+
self.fuse_norm = fuse_norm
|
69 |
+
self.fuse_swiglu = fuse_swiglu
|
70 |
+
self.fuse_cross_entropy = fuse_cross_entropy
|
71 |
+
self.vocab_size = vocab_size
|
72 |
+
|
73 |
+
if attn is not None:
|
74 |
+
if not isinstance(attn, Dict):
|
75 |
+
raise ValueError("attn must be a dictionary")
|
76 |
+
if 'layers' not in attn:
|
77 |
+
raise ValueError("Layer indices must be provided to initialize hybrid attention layers")
|
78 |
+
if 'num_heads' not in attn:
|
79 |
+
raise ValueError("Number of heads must be provided to initialize hybrid attention layers")
|
80 |
+
attn['num_kv_heads'] = attn.get('num_kv_heads', attn['num_heads'])
|
81 |
+
attn['qkv_bias'] = attn.get('qkv_bias', False)
|
82 |
+
attn['window_size'] = attn.get('window_size', None)
|
83 |
+
attn['rope_theta'] = attn.get('rope_theta', 10000.)
|
84 |
+
|
85 |
+
super().__init__(
|
86 |
+
pad_token_id=pad_token_id,
|
87 |
+
bos_token_id=bos_token_id,
|
88 |
+
eos_token_id=eos_token_id,
|
89 |
+
tie_word_embeddings=tie_word_embeddings,
|
90 |
+
**kwargs,
|
91 |
+
)
|
fla/models/bitnet/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (682 Bytes). View file
|
|
fla/models/delta_net/__pycache__/modeling_delta_net.cpython-312.pyc
ADDED
Binary file (18.5 kB). View file
|
|
fla/models/delta_net/modeling_delta_net.py
ADDED
@@ -0,0 +1,415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import math
|
6 |
+
import warnings
|
7 |
+
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from transformers.generation import GenerationMixin
|
13 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
14 |
+
from transformers.modeling_utils import PreTrainedModel
|
15 |
+
from transformers.utils import logging
|
16 |
+
from transformers.utils.deprecation import deprecate_kwarg
|
17 |
+
|
18 |
+
from fla.layers.attn import Attention
|
19 |
+
from fla.layers.delta_net import DeltaNet
|
20 |
+
from fla.models.delta_net.configuration_delta_net import DeltaNetConfig
|
21 |
+
from fla.models.utils import Cache
|
22 |
+
from fla.modules import FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss
|
23 |
+
from fla.modules import GatedMLP as DeltaNetMLP
|
24 |
+
from fla.modules import RMSNorm
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
if TYPE_CHECKING:
|
29 |
+
from transformers.processing_utils import Unpack
|
30 |
+
|
31 |
+
|
32 |
+
class DeltaNetBlock(nn.Module):
|
33 |
+
def __init__(self, config: DeltaNetConfig, layer_idx: int):
|
34 |
+
super().__init__()
|
35 |
+
|
36 |
+
self.config = config
|
37 |
+
self.layer_idx = layer_idx
|
38 |
+
|
39 |
+
self.attn_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
40 |
+
if config.attn is not None and layer_idx in config.attn['layers']:
|
41 |
+
self.attn = Attention(
|
42 |
+
hidden_size=config.hidden_size,
|
43 |
+
num_heads=config.attn['num_heads'],
|
44 |
+
num_kv_heads=config.attn['num_kv_heads'],
|
45 |
+
qkv_bias=config.attn['qkv_bias'],
|
46 |
+
window_size=config.attn['window_size'],
|
47 |
+
rope_theta=config.attn['rope_theta'],
|
48 |
+
max_position_embeddings=config.max_position_embeddings,
|
49 |
+
layer_idx=layer_idx
|
50 |
+
)
|
51 |
+
else:
|
52 |
+
self.attn = DeltaNet(
|
53 |
+
mode=config.attn_mode,
|
54 |
+
hidden_size=config.hidden_size,
|
55 |
+
expand_k=config.expand_k,
|
56 |
+
expand_v=config.expand_v,
|
57 |
+
num_heads=config.num_heads,
|
58 |
+
use_gate=config.use_gate,
|
59 |
+
use_beta=config.use_beta,
|
60 |
+
use_short_conv=config.use_short_conv,
|
61 |
+
use_output_norm=config.use_output_norm,
|
62 |
+
conv_size=config.conv_size,
|
63 |
+
qk_norm=config.qk_norm,
|
64 |
+
qk_activation=config.qk_activation,
|
65 |
+
norm_eps=config.norm_eps,
|
66 |
+
layer_idx=layer_idx
|
67 |
+
)
|
68 |
+
self.mlp_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
69 |
+
self.mlp = DeltaNetMLP(
|
70 |
+
hidden_size=config.hidden_size,
|
71 |
+
hidden_ratio=config.hidden_ratio,
|
72 |
+
intermediate_size=config.intermediate_size,
|
73 |
+
hidden_act=config.hidden_act,
|
74 |
+
fuse_swiglu=config.fuse_swiglu
|
75 |
+
)
|
76 |
+
|
77 |
+
def forward(
|
78 |
+
self,
|
79 |
+
hidden_states: torch.Tensor,
|
80 |
+
attention_mask: Optional[torch.Tensor] = None,
|
81 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
82 |
+
use_cache: Optional[bool] = False,
|
83 |
+
output_attentions: Optional[bool] = False,
|
84 |
+
**kwargs: Unpack[Dict]
|
85 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
86 |
+
residual = hidden_states
|
87 |
+
hidden_states = self.attn_norm(hidden_states)
|
88 |
+
hidden_states, attentions, past_key_values = self.attn(
|
89 |
+
hidden_states=hidden_states,
|
90 |
+
attention_mask=attention_mask,
|
91 |
+
past_key_values=past_key_values,
|
92 |
+
use_cache=use_cache,
|
93 |
+
output_attentions=output_attentions,
|
94 |
+
**kwargs
|
95 |
+
)
|
96 |
+
if self.config.fuse_norm:
|
97 |
+
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
98 |
+
else:
|
99 |
+
hidden_states = residual + hidden_states
|
100 |
+
residual = hidden_states
|
101 |
+
hidden_states = self.mlp_norm(hidden_states)
|
102 |
+
hidden_states = self.mlp(hidden_states, **kwargs)
|
103 |
+
hidden_states = residual + hidden_states
|
104 |
+
|
105 |
+
outputs = (hidden_states, attentions, past_key_values)
|
106 |
+
|
107 |
+
return outputs
|
108 |
+
|
109 |
+
|
110 |
+
class DeltaNetPreTrainedModel(PreTrainedModel):
|
111 |
+
|
112 |
+
config_class = DeltaNetConfig
|
113 |
+
base_model_prefix = 'model'
|
114 |
+
supports_gradient_checkpointing = True
|
115 |
+
_no_split_modules = ['DeltaNetBlock']
|
116 |
+
_supports_cache_class = True
|
117 |
+
|
118 |
+
def __init__(self, *inputs, **kwargs):
|
119 |
+
super().__init__(*inputs, **kwargs)
|
120 |
+
|
121 |
+
def _init_weights(
|
122 |
+
self,
|
123 |
+
module: nn.Module,
|
124 |
+
prenorm_residual_strategy: Optional[str] = 'rescale',
|
125 |
+
num_residuals_per_layer: int = 2,
|
126 |
+
):
|
127 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
128 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
129 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
130 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
131 |
+
if module.bias is not None:
|
132 |
+
nn.init.zeros_(module.bias)
|
133 |
+
elif isinstance(module, nn.Embedding):
|
134 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
135 |
+
elif hasattr(module, 'reset_parameters'):
|
136 |
+
module.reset_parameters()
|
137 |
+
|
138 |
+
if prenorm_residual_strategy is not None:
|
139 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
140 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
141 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
142 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
143 |
+
#
|
144 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
145 |
+
p = None
|
146 |
+
if hasattr(module, 'o_proj'):
|
147 |
+
p = module.o_proj.weight
|
148 |
+
elif hasattr(module, 'down_proj'):
|
149 |
+
p = module.down_proj.weight
|
150 |
+
if p is not None:
|
151 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
152 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
153 |
+
# We need to reinit p since this code could be called multiple times
|
154 |
+
# Having just p *= scale would repeatedly scale it down
|
155 |
+
if prenorm_residual_strategy == 'rescale':
|
156 |
+
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
157 |
+
with torch.no_grad():
|
158 |
+
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
159 |
+
elif prenorm_residual_strategy == 'zero':
|
160 |
+
nn.init.zeros_(p)
|
161 |
+
else:
|
162 |
+
raise ValueError(f"Invalid prenorm_residual_strategy: {prenorm_residual_strategy}")
|
163 |
+
|
164 |
+
|
165 |
+
class DeltaNetModel(DeltaNetPreTrainedModel):
|
166 |
+
|
167 |
+
def __init__(self, config: DeltaNetConfig):
|
168 |
+
super().__init__(config)
|
169 |
+
self.padding_idx = config.pad_token_id
|
170 |
+
self.vocab_size = config.vocab_size
|
171 |
+
|
172 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
173 |
+
self.layers = nn.ModuleList([DeltaNetBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
174 |
+
self.norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
175 |
+
|
176 |
+
self.gradient_checkpointing = False
|
177 |
+
|
178 |
+
self.post_init()
|
179 |
+
|
180 |
+
def get_input_embeddings(self):
|
181 |
+
return self.embeddings
|
182 |
+
|
183 |
+
def set_input_embeddings(self, value):
|
184 |
+
self.embeddings = value
|
185 |
+
|
186 |
+
def forward(
|
187 |
+
self,
|
188 |
+
input_ids: Optional[torch.LongTensor] = None,
|
189 |
+
attention_mask: Optional[torch.Tensor] = None, # noqa
|
190 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
191 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
192 |
+
use_cache: Optional[bool] = None,
|
193 |
+
output_attentions: Optional[bool] = None,
|
194 |
+
output_hidden_states: Optional[bool] = None,
|
195 |
+
return_dict: Optional[bool] = None,
|
196 |
+
**kwargs: Unpack[Dict]
|
197 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
198 |
+
if output_attentions:
|
199 |
+
warnings.warn("`DeltaNetModel` does not `output_attentions` now, setting it to `False`.")
|
200 |
+
output_attentions = False
|
201 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
202 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
203 |
+
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
204 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
205 |
+
|
206 |
+
# retrieve input_ids and inputs_embeds
|
207 |
+
if input_ids is not None and inputs_embeds is not None:
|
208 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
209 |
+
if input_ids is None and inputs_embeds is None:
|
210 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
211 |
+
|
212 |
+
if inputs_embeds is None:
|
213 |
+
inputs_embeds = self.embeddings(input_ids)
|
214 |
+
hidden_states = inputs_embeds
|
215 |
+
|
216 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
217 |
+
past_key_values = Cache.from_legacy_cache(past_key_values)
|
218 |
+
|
219 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
220 |
+
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
221 |
+
use_cache = False
|
222 |
+
|
223 |
+
all_hidden_states = () if output_hidden_states else None
|
224 |
+
all_attns = () if output_attentions else None
|
225 |
+
for layer in self.layers:
|
226 |
+
if output_hidden_states:
|
227 |
+
all_hidden_states += (hidden_states,)
|
228 |
+
|
229 |
+
if self.gradient_checkpointing and self.training:
|
230 |
+
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
|
231 |
+
layer.__call__,
|
232 |
+
hidden_states,
|
233 |
+
attention_mask,
|
234 |
+
past_key_values,
|
235 |
+
use_cache,
|
236 |
+
output_attentions,
|
237 |
+
**kwargs
|
238 |
+
)
|
239 |
+
else:
|
240 |
+
hidden_states, attentions, past_key_values = layer(
|
241 |
+
hidden_states,
|
242 |
+
attention_mask=attention_mask,
|
243 |
+
past_key_values=past_key_values,
|
244 |
+
use_cache=use_cache,
|
245 |
+
output_attentions=output_attentions,
|
246 |
+
**kwargs
|
247 |
+
)
|
248 |
+
|
249 |
+
if output_attentions:
|
250 |
+
all_attns += (attentions,)
|
251 |
+
|
252 |
+
hidden_states = self.norm(hidden_states)
|
253 |
+
|
254 |
+
# add hidden states from the last decoder layer
|
255 |
+
if output_hidden_states:
|
256 |
+
all_hidden_states += (hidden_states,)
|
257 |
+
|
258 |
+
if not return_dict:
|
259 |
+
return tuple(i for i in [hidden_states, past_key_values, all_hidden_states, all_attns] if i is not None)
|
260 |
+
return BaseModelOutputWithPast(
|
261 |
+
last_hidden_state=hidden_states,
|
262 |
+
past_key_values=past_key_values,
|
263 |
+
hidden_states=all_hidden_states,
|
264 |
+
attentions=all_attns
|
265 |
+
)
|
266 |
+
|
267 |
+
|
268 |
+
class DeltaNetForCausalLM(DeltaNetPreTrainedModel, GenerationMixin):
|
269 |
+
|
270 |
+
_tied_weights_keys = ["lm_head.weight"]
|
271 |
+
|
272 |
+
def __init__(self, config):
|
273 |
+
super().__init__(config)
|
274 |
+
self.model = DeltaNetModel(config)
|
275 |
+
self.vocab_size = config.vocab_size
|
276 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
277 |
+
self.criterion = None
|
278 |
+
|
279 |
+
# Initialize weights and apply final processing
|
280 |
+
self.post_init()
|
281 |
+
|
282 |
+
def get_input_embeddings(self):
|
283 |
+
return self.model.embeddings
|
284 |
+
|
285 |
+
def set_input_embeddings(self, value):
|
286 |
+
self.model.embeddings = value
|
287 |
+
|
288 |
+
def get_output_embeddings(self):
|
289 |
+
return self.lm_head
|
290 |
+
|
291 |
+
def set_output_embeddings(self, new_embeddings):
|
292 |
+
self.lm_head = new_embeddings
|
293 |
+
|
294 |
+
def set_decoder(self, decoder):
|
295 |
+
self.model = decoder
|
296 |
+
|
297 |
+
def get_decoder(self):
|
298 |
+
return self.model
|
299 |
+
|
300 |
+
def generate(self, *args, **kwargs):
|
301 |
+
try:
|
302 |
+
return super().generate(*args, **kwargs)
|
303 |
+
except AttributeError as exception:
|
304 |
+
if 'past_key_values' in str(exception):
|
305 |
+
raise AttributeError(
|
306 |
+
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
|
307 |
+
f"which is not supported for {self.__class__.__name__}. "
|
308 |
+
f"Try another generation strategy instead. "
|
309 |
+
f"For the available generation strategies, check this doc: "
|
310 |
+
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
|
311 |
+
)
|
312 |
+
else:
|
313 |
+
raise exception
|
314 |
+
|
315 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
316 |
+
def prepare_inputs_for_generation(
|
317 |
+
self,
|
318 |
+
input_ids: torch.LongTensor = None,
|
319 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
320 |
+
attention_mask: Optional[torch.Tensor] = None,
|
321 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
322 |
+
use_cache: bool = True,
|
323 |
+
logits_to_keep: Optional[int] = None,
|
324 |
+
**kwargs
|
325 |
+
):
|
326 |
+
# only last token for `inputs_ids` if the `past_key_values` is not empty.
|
327 |
+
if past_key_values is not None and len(past_key_values) > 0:
|
328 |
+
input_ids = input_ids[:, -1:]
|
329 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
330 |
+
if inputs_embeds is not None and len(past_key_values) == 0:
|
331 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
332 |
+
else:
|
333 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
334 |
+
# recompiles graphs as the stride of the inputs is a guard.
|
335 |
+
# Ref: https://github.com/huggingface/transformers/pull/29114
|
336 |
+
# TODO: use `next_tokens` directly instead.
|
337 |
+
model_inputs = {'input_ids': input_ids.contiguous()}
|
338 |
+
|
339 |
+
if logits_to_keep is not None:
|
340 |
+
model_inputs['logits_to_keep'] = logits_to_keep
|
341 |
+
|
342 |
+
model_inputs.update({
|
343 |
+
'past_key_values': past_key_values,
|
344 |
+
'use_cache': use_cache,
|
345 |
+
'attention_mask': attention_mask,
|
346 |
+
})
|
347 |
+
return model_inputs
|
348 |
+
|
349 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
350 |
+
def forward(
|
351 |
+
self,
|
352 |
+
input_ids: torch.LongTensor = None,
|
353 |
+
attention_mask: Optional[torch.Tensor] = None,
|
354 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
355 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
356 |
+
labels: Optional[torch.LongTensor] = None,
|
357 |
+
use_cache: Optional[bool] = None,
|
358 |
+
output_attentions: Optional[bool] = None,
|
359 |
+
output_hidden_states: Optional[bool] = None,
|
360 |
+
return_dict: Optional[bool] = None,
|
361 |
+
logits_to_keep: Optional[int] = 0,
|
362 |
+
**kwargs: Unpack[Dict]
|
363 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
364 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
365 |
+
output_hidden_states = (
|
366 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
367 |
+
)
|
368 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
369 |
+
|
370 |
+
outputs = self.model(
|
371 |
+
input_ids=input_ids,
|
372 |
+
attention_mask=attention_mask,
|
373 |
+
inputs_embeds=inputs_embeds,
|
374 |
+
past_key_values=past_key_values,
|
375 |
+
use_cache=use_cache,
|
376 |
+
output_attentions=output_attentions,
|
377 |
+
output_hidden_states=output_hidden_states,
|
378 |
+
return_dict=return_dict,
|
379 |
+
**kwargs
|
380 |
+
)
|
381 |
+
|
382 |
+
hidden_states = outputs[0]
|
383 |
+
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
|
384 |
+
|
385 |
+
loss, logits = None, None
|
386 |
+
if not fuse_linear_and_cross_entropy or labels is None:
|
387 |
+
logits = self.lm_head(hidden_states if logits_to_keep is None else hidden_states[:, -logits_to_keep:])
|
388 |
+
if labels is not None:
|
389 |
+
if getattr(self, 'criterion', None) is None:
|
390 |
+
if fuse_linear_and_cross_entropy:
|
391 |
+
criterion = FusedLinearCrossEntropyLoss()
|
392 |
+
elif self.config.fuse_cross_entropy:
|
393 |
+
criterion = FusedCrossEntropyLoss(inplace_backward=True)
|
394 |
+
else:
|
395 |
+
criterion = nn.CrossEntropyLoss()
|
396 |
+
else:
|
397 |
+
criterion = self.criterion
|
398 |
+
labels = labels.to(hidden_states.device)
|
399 |
+
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], criterion.ignore_index)), 1)
|
400 |
+
if fuse_linear_and_cross_entropy:
|
401 |
+
loss = criterion(hidden_states, labels, self.lm_head.weight, self.lm_head.bias)
|
402 |
+
else:
|
403 |
+
loss = criterion(logits.view(labels.numel(), -1), labels.view(-1))
|
404 |
+
|
405 |
+
if not return_dict:
|
406 |
+
output = (logits,) + outputs[1:]
|
407 |
+
return (loss,) + output if loss is not None else output
|
408 |
+
|
409 |
+
return CausalLMOutputWithPast(
|
410 |
+
loss=loss,
|
411 |
+
logits=logits,
|
412 |
+
past_key_values=outputs.past_key_values,
|
413 |
+
hidden_states=outputs.hidden_states,
|
414 |
+
attentions=outputs.attentions,
|
415 |
+
)
|
fla/models/forgetting_transformer/__pycache__/configuration_forgetting_transformer.cpython-312.pyc
ADDED
Binary file (2.5 kB). View file
|
|
fla/models/forgetting_transformer/__pycache__/modeling_forgetting_transformer.cpython-312.pyc
ADDED
Binary file (17.2 kB). View file
|
|
fla/models/forgetting_transformer/configuration_forgetting_transformer.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
from transformers.configuration_utils import PretrainedConfig
|
6 |
+
|
7 |
+
|
8 |
+
class ForgettingTransformerConfig(PretrainedConfig):
|
9 |
+
|
10 |
+
model_type = 'forgetting_transformer'
|
11 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
hidden_size: int = 2048,
|
16 |
+
num_hidden_layers: int = 24,
|
17 |
+
num_heads: int = 32,
|
18 |
+
num_kv_heads: Optional[int] = None,
|
19 |
+
qkv_bias: bool = False,
|
20 |
+
qk_norm: bool = False,
|
21 |
+
window_size: Optional[int] = None,
|
22 |
+
use_output_gate: bool = False,
|
23 |
+
hidden_ratio: Optional[int] = 4,
|
24 |
+
intermediate_size: Optional[int] = None,
|
25 |
+
hidden_act: str = "swish",
|
26 |
+
initializer_range: float = 0.006,
|
27 |
+
elementwise_affine: Optional[bool] = True,
|
28 |
+
norm_eps: float = 1e-6,
|
29 |
+
use_cache: bool = True,
|
30 |
+
pad_token_id: Optional[int] = None,
|
31 |
+
bos_token_id: int = 1,
|
32 |
+
eos_token_id: int = 2,
|
33 |
+
tie_word_embeddings: bool = False,
|
34 |
+
fuse_norm: bool = True,
|
35 |
+
fuse_swiglu: bool = True,
|
36 |
+
fuse_cross_entropy: bool = True,
|
37 |
+
vocab_size: int = 32000,
|
38 |
+
**kwargs,
|
39 |
+
):
|
40 |
+
self.hidden_size = hidden_size
|
41 |
+
self.num_hidden_layers = num_hidden_layers
|
42 |
+
self.num_heads = num_heads
|
43 |
+
self.num_kv_heads = num_kv_heads
|
44 |
+
self.qkv_bias = qkv_bias
|
45 |
+
self.qk_norm = qk_norm
|
46 |
+
self.window_size = window_size
|
47 |
+
self.use_output_gate = use_output_gate
|
48 |
+
self.hidden_ratio = hidden_ratio
|
49 |
+
self.intermediate_size = intermediate_size
|
50 |
+
self.hidden_act = hidden_act
|
51 |
+
|
52 |
+
self.initializer_range = initializer_range
|
53 |
+
self.elementwise_affine = elementwise_affine
|
54 |
+
self.norm_eps = norm_eps
|
55 |
+
self.use_cache = use_cache
|
56 |
+
|
57 |
+
self.fuse_norm = fuse_norm
|
58 |
+
self.fuse_swiglu = fuse_swiglu
|
59 |
+
self.fuse_cross_entropy = fuse_cross_entropy
|
60 |
+
self.vocab_size = vocab_size
|
61 |
+
|
62 |
+
super().__init__(
|
63 |
+
pad_token_id=pad_token_id,
|
64 |
+
bos_token_id=bos_token_id,
|
65 |
+
eos_token_id=eos_token_id,
|
66 |
+
tie_word_embeddings=tie_word_embeddings,
|
67 |
+
**kwargs,
|
68 |
+
)
|
fla/models/gated_deltanet/__init__.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
4 |
+
|
5 |
+
from fla.models.gated_deltanet.configuration_gated_deltanet import GatedDeltaNetConfig
|
6 |
+
from fla.models.gated_deltanet.modeling_gated_deltanet import GatedDeltaNetForCausalLM, GatedDeltaNetModel
|
7 |
+
|
8 |
+
AutoConfig.register(GatedDeltaNetConfig.model_type, GatedDeltaNetConfig)
|
9 |
+
AutoModel.register(GatedDeltaNetConfig, GatedDeltaNetModel)
|
10 |
+
AutoModelForCausalLM.register(GatedDeltaNetConfig, GatedDeltaNetForCausalLM)
|
11 |
+
|
12 |
+
__all__ = ['GatedDeltaNetConfig', 'GatedDeltaNetForCausalLM', 'GatedDeltaNetModel']
|
fla/models/gated_deltanet/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (746 Bytes). View file
|
|
fla/models/gated_deltanet/__pycache__/modeling_gated_deltanet.cpython-312.pyc
ADDED
Binary file (18.5 kB). View file
|
|
fla/models/gated_deltaproduct/__pycache__/modeling_gated_deltaproduct.cpython-312.pyc
ADDED
Binary file (20.7 kB). View file
|
|
fla/models/gla/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (657 Bytes). View file
|
|
fla/models/gsa/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
4 |
+
|
5 |
+
from fla.models.gsa.configuration_gsa import GSAConfig
|
6 |
+
from fla.models.gsa.modeling_gsa import GSAForCausalLM, GSAModel
|
7 |
+
|
8 |
+
AutoConfig.register(GSAConfig.model_type, GSAConfig)
|
9 |
+
AutoModel.register(GSAConfig, GSAModel)
|
10 |
+
AutoModelForCausalLM.register(GSAConfig, GSAForCausalLM)
|
11 |
+
|
12 |
+
|
13 |
+
__all__ = ['GSAConfig', 'GSAForCausalLM', 'GSAModel']
|
fla/models/gsa/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (657 Bytes). View file
|
|
fla/models/gsa/__pycache__/configuration_gsa.cpython-312.pyc
ADDED
Binary file (3.84 kB). View file
|
|
fla/models/gsa/__pycache__/modeling_gsa.cpython-312.pyc
ADDED
Binary file (18.7 kB). View file
|
|
fla/models/hgrn/__pycache__/configuration_hgrn.cpython-312.pyc
ADDED
Binary file (3.28 kB). View file
|
|
fla/models/hgrn/__pycache__/modeling_hgrn.cpython-312.pyc
ADDED
Binary file (18.8 kB). View file
|
|
fla/models/hgrn2/__pycache__/configuration_hgrn2.cpython-312.pyc
ADDED
Binary file (3.55 kB). View file
|
|
fla/models/hgrn2/__pycache__/modeling_hgrn2.cpython-312.pyc
ADDED
Binary file (18.9 kB). View file
|
|
fla/models/hgrn2/configuration_hgrn2.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from typing import Dict, Optional
|
4 |
+
|
5 |
+
from transformers.configuration_utils import PretrainedConfig
|
6 |
+
|
7 |
+
|
8 |
+
class HGRN2Config(PretrainedConfig):
|
9 |
+
|
10 |
+
model_type = 'hgrn2'
|
11 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
hidden_size: int = 2048,
|
16 |
+
num_hidden_layers: int = 24,
|
17 |
+
attn_mode: str = "chunk",
|
18 |
+
num_heads: Optional[int] = None,
|
19 |
+
expand_ratio: Optional[int] = 128,
|
20 |
+
use_short_conv: bool = False,
|
21 |
+
conv_size: int = 4,
|
22 |
+
use_lower_bound: bool = True,
|
23 |
+
hidden_ratio: Optional[int] = 4,
|
24 |
+
intermediate_size: Optional[int] = None,
|
25 |
+
hidden_act: str = "swish",
|
26 |
+
max_position_embeddings: int = 2048,
|
27 |
+
elementwise_affine: Optional[bool] = True,
|
28 |
+
norm_eps: float = 1e-6,
|
29 |
+
attn: Optional[Dict] = None,
|
30 |
+
use_cache: bool = True,
|
31 |
+
pad_token_id: int = None,
|
32 |
+
bos_token_id: int = 1,
|
33 |
+
eos_token_id: int = 2,
|
34 |
+
tie_word_embeddings: bool = False,
|
35 |
+
initializer_range: float = 0.006,
|
36 |
+
fuse_norm: bool = True,
|
37 |
+
fuse_swiglu: bool = True,
|
38 |
+
fuse_cross_entropy: bool = True,
|
39 |
+
vocab_size: int = 32000,
|
40 |
+
**kwargs
|
41 |
+
):
|
42 |
+
self.hidden_size = hidden_size
|
43 |
+
self.num_hidden_layers = num_hidden_layers
|
44 |
+
self.attn_mode = attn_mode
|
45 |
+
|
46 |
+
if expand_ratio is None and num_heads is not None:
|
47 |
+
expand_ratio = hidden_size // num_heads
|
48 |
+
elif expand_ratio is not None and num_heads is None:
|
49 |
+
num_heads = hidden_size // expand_ratio
|
50 |
+
elif expand_ratio is None and num_heads is None:
|
51 |
+
raise RuntimeError("One of `expand_ratio` or `num_heads` should be provided.")
|
52 |
+
self.num_heads = num_heads
|
53 |
+
self.expand_ratio = expand_ratio
|
54 |
+
|
55 |
+
self.use_short_conv = use_short_conv
|
56 |
+
self.conv_size = conv_size
|
57 |
+
self.use_lower_bound = use_lower_bound
|
58 |
+
self.max_position_embeddings = max_position_embeddings
|
59 |
+
self.hidden_ratio = hidden_ratio
|
60 |
+
self.intermediate_size = intermediate_size
|
61 |
+
self.hidden_act = hidden_act
|
62 |
+
self.elementwise_affine = elementwise_affine
|
63 |
+
self.norm_eps = norm_eps
|
64 |
+
self.attn = attn
|
65 |
+
self.use_cache = use_cache
|
66 |
+
self.initializer_range = initializer_range
|
67 |
+
|
68 |
+
self.fuse_norm = fuse_norm
|
69 |
+
self.fuse_swiglu = fuse_swiglu
|
70 |
+
self.fuse_cross_entropy = fuse_cross_entropy
|
71 |
+
self.vocab_size = vocab_size
|
72 |
+
|
73 |
+
if attn is not None:
|
74 |
+
if not isinstance(attn, Dict):
|
75 |
+
raise ValueError("attn must be a dictionary")
|
76 |
+
if 'layers' not in attn:
|
77 |
+
raise ValueError("Layer indices must be provided to initialize hybrid attention layers")
|
78 |
+
if 'num_heads' not in attn:
|
79 |
+
raise ValueError("Number of heads must be provided to initialize hybrid attention layers")
|
80 |
+
attn['num_kv_heads'] = attn.get('num_kv_heads', attn['num_heads'])
|
81 |
+
attn['qkv_bias'] = attn.get('qkv_bias', False)
|
82 |
+
attn['window_size'] = attn.get('window_size', None)
|
83 |
+
attn['rope_theta'] = attn.get('rope_theta', 10000.)
|
84 |
+
|
85 |
+
super().__init__(
|
86 |
+
pad_token_id=pad_token_id,
|
87 |
+
bos_token_id=bos_token_id,
|
88 |
+
eos_token_id=eos_token_id,
|
89 |
+
tie_word_embeddings=tie_word_embeddings,
|
90 |
+
**kwargs,
|
91 |
+
)
|
fla/models/lightnet/__pycache__/configuration_lightnet.cpython-312.pyc
ADDED
Binary file (3.36 kB). View file
|
|
fla/models/lightnet/__pycache__/modeling_lightnet.cpython-312.pyc
ADDED
Binary file (18.3 kB). View file
|
|
fla/models/mamba/__pycache__/configuration_mamba.cpython-312.pyc
ADDED
Binary file (7.06 kB). View file
|
|
fla/models/mamba/__pycache__/modeling_mamba.cpython-312.pyc
ADDED
Binary file (41.5 kB). View file
|
|
fla/models/mamba2/__pycache__/configuration_mamba2.cpython-312.pyc
ADDED
Binary file (7.5 kB). View file
|
|
fla/models/mamba2/__pycache__/modeling_mamba2.cpython-312.pyc
ADDED
Binary file (52.4 kB). View file
|
|
fla/models/nsa/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (657 Bytes). View file
|
|
fla/models/nsa/__pycache__/modeling_nsa.cpython-312.pyc
ADDED
Binary file (17.6 kB). View file
|
|
fla/models/retnet/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (682 Bytes). View file
|
|
fla/models/retnet/__pycache__/configuration_retnet.cpython-312.pyc
ADDED
Binary file (3.73 kB). View file
|
|
fla/models/retnet/__pycache__/modeling_retnet.cpython-312.pyc
ADDED
Binary file (18.4 kB). View file
|
|
fla/models/rwkv6/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (687 Bytes). View file
|
|
fla/models/samba/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (717 Bytes). View file
|
|
fla/models/samba/__pycache__/configuration_samba.cpython-312.pyc
ADDED
Binary file (3.39 kB). View file
|
|
fla/models/samba/__pycache__/modeling_samba.cpython-312.pyc
ADDED
Binary file (20.9 kB). View file
|
|
fla/models/transformer/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (728 Bytes). View file
|
|
fla/models/transformer/__pycache__/configuration_transformer.cpython-312.pyc
ADDED
Binary file (2.52 kB). View file
|
|
fla/models/transformer/__pycache__/modeling_transformer.cpython-312.pyc
ADDED
Binary file (17.1 kB). View file
|
|
fla/models/transformer/modeling_transformer.py
ADDED
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import math
|
6 |
+
import warnings
|
7 |
+
from typing import TYPE_CHECKING, Any, List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from transformers.generation import GenerationMixin
|
13 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
14 |
+
from transformers.modeling_utils import PreTrainedModel
|
15 |
+
from transformers.utils import logging
|
16 |
+
from transformers.utils.deprecation import deprecate_kwarg
|
17 |
+
|
18 |
+
from fla.layers.attn import Attention
|
19 |
+
from fla.models.transformer.configuration_transformer import TransformerConfig
|
20 |
+
from fla.models.utils import Cache
|
21 |
+
from fla.modules import FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss
|
22 |
+
from fla.modules import GatedMLP as TransformerMLP
|
23 |
+
from fla.modules import RMSNorm
|
24 |
+
|
25 |
+
if TYPE_CHECKING:
|
26 |
+
from transformers.processing_utils import Unpack
|
27 |
+
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
|
31 |
+
|
32 |
+
class TransformerBlock(nn.Module):
|
33 |
+
|
34 |
+
def __init__(self, config: TransformerConfig, layer_idx: int):
|
35 |
+
super().__init__()
|
36 |
+
|
37 |
+
self.config = config
|
38 |
+
self.layer_idx = layer_idx
|
39 |
+
|
40 |
+
self.attn_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
41 |
+
self.attn = Attention(
|
42 |
+
hidden_size=config.hidden_size,
|
43 |
+
num_heads=config.num_heads,
|
44 |
+
num_kv_heads=config.num_kv_heads,
|
45 |
+
qkv_bias=config.qkv_bias,
|
46 |
+
qk_norm=config.qk_norm,
|
47 |
+
window_size=config.window_size,
|
48 |
+
rope_theta=config.rope_theta,
|
49 |
+
max_position_embeddings=config.max_position_embeddings,
|
50 |
+
layer_idx=layer_idx
|
51 |
+
)
|
52 |
+
|
53 |
+
self.mlp_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
54 |
+
self.mlp = TransformerMLP(
|
55 |
+
hidden_size=config.hidden_size,
|
56 |
+
hidden_ratio=config.hidden_ratio,
|
57 |
+
intermediate_size=config.intermediate_size,
|
58 |
+
hidden_act=config.hidden_act,
|
59 |
+
fuse_swiglu=config.fuse_swiglu
|
60 |
+
)
|
61 |
+
|
62 |
+
def forward(
|
63 |
+
self,
|
64 |
+
hidden_states: torch.Tensor,
|
65 |
+
attention_mask: Optional[torch.Tensor] = None,
|
66 |
+
past_key_values: Optional[Tuple[torch.Tensor]] = None,
|
67 |
+
output_attentions: Optional[bool] = False,
|
68 |
+
use_cache: Optional[bool] = False,
|
69 |
+
**kwargs: Unpack[Any]
|
70 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
71 |
+
|
72 |
+
residual = hidden_states
|
73 |
+
hidden_states = self.attn_norm(hidden_states)
|
74 |
+
hidden_states, attentions, past_key_values = self.attn(
|
75 |
+
hidden_states=hidden_states,
|
76 |
+
attention_mask=attention_mask,
|
77 |
+
past_key_values=past_key_values,
|
78 |
+
use_cache=use_cache,
|
79 |
+
output_attentions=output_attentions,
|
80 |
+
**kwargs
|
81 |
+
)
|
82 |
+
if self.config.fuse_norm:
|
83 |
+
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
84 |
+
else:
|
85 |
+
hidden_states = residual + hidden_states
|
86 |
+
residual = hidden_states
|
87 |
+
hidden_states = self.mlp_norm(hidden_states)
|
88 |
+
hidden_states = self.mlp(hidden_states, **kwargs)
|
89 |
+
hidden_states = residual + hidden_states
|
90 |
+
|
91 |
+
outputs = (hidden_states,)
|
92 |
+
|
93 |
+
if output_attentions:
|
94 |
+
outputs += (attentions,)
|
95 |
+
|
96 |
+
if use_cache:
|
97 |
+
outputs += (past_key_values,)
|
98 |
+
|
99 |
+
return outputs
|
100 |
+
|
101 |
+
|
102 |
+
class TransformerPreTrainedModel(PreTrainedModel):
|
103 |
+
|
104 |
+
config_class = TransformerConfig
|
105 |
+
base_model_prefix = 'model'
|
106 |
+
supports_gradient_checkpointing = True
|
107 |
+
_no_split_modules = ['TransformerBlock']
|
108 |
+
_supports_cache_class = True
|
109 |
+
|
110 |
+
def __init__(self, *inputs, **kwargs):
|
111 |
+
super().__init__(*inputs, **kwargs)
|
112 |
+
|
113 |
+
def _init_weights(
|
114 |
+
self,
|
115 |
+
module: nn.Module,
|
116 |
+
rescale_prenorm_residual: bool = False,
|
117 |
+
num_residuals_per_layer: int = 2,
|
118 |
+
):
|
119 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
120 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
121 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
122 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
123 |
+
if module.bias is not None:
|
124 |
+
nn.init.zeros_(module.bias)
|
125 |
+
elif isinstance(module, nn.Embedding):
|
126 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
127 |
+
elif hasattr(module, 'reset_parameters'):
|
128 |
+
module.reset_parameters()
|
129 |
+
|
130 |
+
if rescale_prenorm_residual:
|
131 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
132 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
133 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
134 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
135 |
+
#
|
136 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
137 |
+
p = None
|
138 |
+
if hasattr(module, 'o_proj'):
|
139 |
+
p = module.o_proj.weight
|
140 |
+
elif hasattr(module, 'down_proj'):
|
141 |
+
p = module.down_proj.weight
|
142 |
+
if p is not None:
|
143 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
144 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
145 |
+
# We need to reinit p since this code could be called multiple times
|
146 |
+
# Having just p *= scale would repeatedly scale it down
|
147 |
+
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
148 |
+
with torch.no_grad():
|
149 |
+
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
150 |
+
|
151 |
+
|
152 |
+
class TransformerModel(TransformerPreTrainedModel):
|
153 |
+
|
154 |
+
def __init__(
|
155 |
+
self,
|
156 |
+
config: TransformerConfig
|
157 |
+
) -> TransformerModel:
|
158 |
+
super().__init__(config)
|
159 |
+
self.padding_idx = config.pad_token_id
|
160 |
+
self.vocab_size = config.vocab_size
|
161 |
+
|
162 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
163 |
+
self.layers = nn.ModuleList([TransformerBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
164 |
+
self.norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
165 |
+
|
166 |
+
self.gradient_checkpointing = False
|
167 |
+
|
168 |
+
self.post_init()
|
169 |
+
|
170 |
+
def get_input_embeddings(self):
|
171 |
+
return self.embeddings
|
172 |
+
|
173 |
+
def set_input_embeddings(self, value):
|
174 |
+
self.embeddings = value
|
175 |
+
|
176 |
+
def forward(
|
177 |
+
self,
|
178 |
+
input_ids: Optional[torch.LongTensor] = None,
|
179 |
+
attention_mask: Optional[torch.Tensor] = None,
|
180 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
181 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
182 |
+
use_cache: Optional[bool] = None,
|
183 |
+
output_attentions: Optional[bool] = None,
|
184 |
+
output_hidden_states: Optional[bool] = None,
|
185 |
+
return_dict: Optional[bool] = None,
|
186 |
+
**kwargs: Unpack[Any]
|
187 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
188 |
+
if output_attentions:
|
189 |
+
warnings.warn(
|
190 |
+
"`TransformerModel` does not support output attention weights now, so `output_attentions` is set to `False`."
|
191 |
+
)
|
192 |
+
output_attentions = False
|
193 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
194 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
195 |
+
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
196 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
197 |
+
|
198 |
+
# retrieve input_ids and inputs_embeds
|
199 |
+
if input_ids is not None and inputs_embeds is not None:
|
200 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
201 |
+
elif input_ids is None and inputs_embeds is None:
|
202 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
203 |
+
|
204 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
205 |
+
past_key_values = Cache.from_legacy_cache(past_key_values)
|
206 |
+
|
207 |
+
if inputs_embeds is None:
|
208 |
+
inputs_embeds = self.embeddings(input_ids)
|
209 |
+
|
210 |
+
# embed positions
|
211 |
+
hidden_states = inputs_embeds
|
212 |
+
|
213 |
+
if self.gradient_checkpointing and self.training:
|
214 |
+
if use_cache:
|
215 |
+
logger.warning_once(
|
216 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
217 |
+
)
|
218 |
+
use_cache = False
|
219 |
+
|
220 |
+
all_hidden_states = () if output_hidden_states else None
|
221 |
+
all_attns = () if output_attentions else None
|
222 |
+
next_cache = None
|
223 |
+
|
224 |
+
for layer in self.layers:
|
225 |
+
if output_hidden_states:
|
226 |
+
all_hidden_states += (hidden_states,)
|
227 |
+
|
228 |
+
if self.gradient_checkpointing and self.training:
|
229 |
+
layer_outputs = self._gradient_checkpointing_func(
|
230 |
+
layer.__call__,
|
231 |
+
hidden_states,
|
232 |
+
attention_mask,
|
233 |
+
past_key_values,
|
234 |
+
output_attentions,
|
235 |
+
use_cache,
|
236 |
+
**kwargs
|
237 |
+
)
|
238 |
+
else:
|
239 |
+
layer_outputs = layer(
|
240 |
+
hidden_states,
|
241 |
+
attention_mask=attention_mask,
|
242 |
+
past_key_values=past_key_values,
|
243 |
+
output_attentions=output_attentions,
|
244 |
+
use_cache=use_cache,
|
245 |
+
**kwargs
|
246 |
+
)
|
247 |
+
|
248 |
+
hidden_states = layer_outputs[0]
|
249 |
+
|
250 |
+
if use_cache:
|
251 |
+
next_cache = layer_outputs[2 if output_attentions else 1]
|
252 |
+
|
253 |
+
if output_attentions:
|
254 |
+
all_attns += (layer_outputs[1],)
|
255 |
+
|
256 |
+
hidden_states = self.norm(hidden_states)
|
257 |
+
|
258 |
+
# add hidden states from the last decoder layer
|
259 |
+
if output_hidden_states:
|
260 |
+
all_hidden_states += (hidden_states,)
|
261 |
+
|
262 |
+
if not return_dict:
|
263 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_attns] if v is not None)
|
264 |
+
|
265 |
+
return BaseModelOutputWithPast(
|
266 |
+
last_hidden_state=hidden_states,
|
267 |
+
past_key_values=next_cache,
|
268 |
+
hidden_states=all_hidden_states,
|
269 |
+
attentions=all_attns
|
270 |
+
)
|
271 |
+
|
272 |
+
|
273 |
+
class TransformerForCausalLM(TransformerPreTrainedModel, GenerationMixin):
|
274 |
+
|
275 |
+
_tied_weights_keys = ["lm_head.weight"]
|
276 |
+
|
277 |
+
def __init__(self, config):
|
278 |
+
super().__init__(config)
|
279 |
+
self.model = TransformerModel(config)
|
280 |
+
self.vocab_size = config.vocab_size
|
281 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
282 |
+
self.criterion = None
|
283 |
+
|
284 |
+
# Initialize weights and apply final processing
|
285 |
+
self.post_init()
|
286 |
+
|
287 |
+
def get_input_embeddings(self):
|
288 |
+
return self.model.embeddings
|
289 |
+
|
290 |
+
def set_input_embeddings(self, value):
|
291 |
+
self.model.embeddings = value
|
292 |
+
|
293 |
+
def get_output_embeddings(self):
|
294 |
+
return self.lm_head
|
295 |
+
|
296 |
+
def set_output_embeddings(self, new_embeddings):
|
297 |
+
self.lm_head = new_embeddings
|
298 |
+
|
299 |
+
def set_decoder(self, decoder):
|
300 |
+
self.model = decoder
|
301 |
+
|
302 |
+
def get_decoder(self):
|
303 |
+
return self.model
|
304 |
+
|
305 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
306 |
+
def prepare_inputs_for_generation(
|
307 |
+
self,
|
308 |
+
input_ids: torch.LongTensor = None,
|
309 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
310 |
+
attention_mask: Optional[torch.Tensor] = None,
|
311 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
312 |
+
use_cache: bool = True,
|
313 |
+
logits_to_keep: Optional[int] = None,
|
314 |
+
**kwargs
|
315 |
+
):
|
316 |
+
# only last token for `inputs_ids` if the `past_key_values` is not empty.
|
317 |
+
if past_key_values is not None and len(past_key_values) > 0:
|
318 |
+
input_ids = input_ids[:, -1:]
|
319 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
320 |
+
if inputs_embeds is not None and len(past_key_values) == 0:
|
321 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
322 |
+
else:
|
323 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
324 |
+
# recompiles graphs as the stride of the inputs is a guard.
|
325 |
+
# Ref: https://github.com/huggingface/transformers/pull/29114
|
326 |
+
# TODO: use `next_tokens` directly instead.
|
327 |
+
model_inputs = {'input_ids': input_ids.contiguous()}
|
328 |
+
|
329 |
+
if logits_to_keep is not None:
|
330 |
+
model_inputs['logits_to_keep'] = logits_to_keep
|
331 |
+
|
332 |
+
model_inputs.update({
|
333 |
+
'past_key_values': past_key_values,
|
334 |
+
'use_cache': use_cache,
|
335 |
+
'attention_mask': attention_mask,
|
336 |
+
})
|
337 |
+
return model_inputs
|
338 |
+
|
339 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
340 |
+
def forward(
|
341 |
+
self,
|
342 |
+
input_ids: torch.LongTensor = None,
|
343 |
+
attention_mask: Optional[torch.Tensor] = None,
|
344 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
345 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
346 |
+
labels: Optional[torch.LongTensor] = None,
|
347 |
+
use_cache: Optional[bool] = None,
|
348 |
+
output_attentions: Optional[bool] = None,
|
349 |
+
output_hidden_states: Optional[bool] = None,
|
350 |
+
return_dict: Optional[bool] = None,
|
351 |
+
logits_to_keep: Optional[int] = 0,
|
352 |
+
**kwargs: Unpack[Any]
|
353 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
354 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
355 |
+
output_hidden_states = (
|
356 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
357 |
+
)
|
358 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
359 |
+
|
360 |
+
outputs = self.model(
|
361 |
+
input_ids=input_ids,
|
362 |
+
attention_mask=attention_mask,
|
363 |
+
past_key_values=past_key_values,
|
364 |
+
inputs_embeds=inputs_embeds,
|
365 |
+
use_cache=use_cache,
|
366 |
+
output_attentions=output_attentions,
|
367 |
+
output_hidden_states=output_hidden_states,
|
368 |
+
return_dict=return_dict,
|
369 |
+
**kwargs
|
370 |
+
)
|
371 |
+
|
372 |
+
hidden_states = outputs[0]
|
373 |
+
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
|
374 |
+
logits = None if fuse_linear_and_cross_entropy else self.lm_head(hidden_states[:, -logits_to_keep:])
|
375 |
+
|
376 |
+
loss = None
|
377 |
+
if labels is not None:
|
378 |
+
if getattr(self, 'criterion', None) is None:
|
379 |
+
if fuse_linear_and_cross_entropy:
|
380 |
+
criterion = FusedLinearCrossEntropyLoss()
|
381 |
+
elif self.config.fuse_cross_entropy:
|
382 |
+
criterion = FusedCrossEntropyLoss(inplace_backward=True)
|
383 |
+
else:
|
384 |
+
criterion = nn.CrossEntropyLoss()
|
385 |
+
else:
|
386 |
+
criterion = self.criterion
|
387 |
+
# Enable model parallelism
|
388 |
+
labels = labels.to(hidden_states.device)
|
389 |
+
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], criterion.ignore_index)), 1)
|
390 |
+
labels = labels[..., :hidden_states.shape[1]].contiguous()
|
391 |
+
if fuse_linear_and_cross_entropy:
|
392 |
+
loss = criterion(hidden_states, labels, self.lm_head.weight, self.lm_head.bias)
|
393 |
+
else:
|
394 |
+
loss = criterion(logits.view(labels.numel(), -1), labels.view(-1))
|
395 |
+
|
396 |
+
if not return_dict:
|
397 |
+
output = (logits,) + outputs[1:]
|
398 |
+
return (loss,) + output if loss is not None else output
|
399 |
+
|
400 |
+
return CausalLMOutputWithPast(
|
401 |
+
loss=loss,
|
402 |
+
logits=logits,
|
403 |
+
past_key_values=outputs.past_key_values,
|
404 |
+
hidden_states=outputs.hidden_states,
|
405 |
+
attentions=outputs.attentions,
|
406 |
+
)
|
fla/models/transformer_mtp/__pycache__/configuration_transformer.cpython-312.pyc
ADDED
Binary file (2.69 kB). View file
|
|
fla/models/transformer_mtp/__pycache__/modeling_transformer.cpython-312.pyc
ADDED
Binary file (24.7 kB). View file
|
|
fla/models/transformer_mtp/configuration_transformer.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
from transformers.configuration_utils import PretrainedConfig
|
6 |
+
|
7 |
+
|
8 |
+
class MTPTransformerConfig(PretrainedConfig):
|
9 |
+
|
10 |
+
model_type = 'mtp_transformer'
|
11 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
hidden_size: int = 2048,
|
16 |
+
num_hidden_layers: int = 24,
|
17 |
+
num_heads: int = 32,
|
18 |
+
num_kv_heads: int = None,
|
19 |
+
qkv_bias: bool = False,
|
20 |
+
qk_norm: bool = False,
|
21 |
+
window_size: Optional[int] = None,
|
22 |
+
rope_theta: Optional[float] = 10000.,
|
23 |
+
max_position_embeddings: int = 2048,
|
24 |
+
hidden_ratio: Optional[int] = 4,
|
25 |
+
intermediate_size: Optional[int] = None,
|
26 |
+
hidden_act: str = "swish",
|
27 |
+
initializer_range: float = 0.006,
|
28 |
+
elementwise_affine: Optional[bool] = True,
|
29 |
+
norm_eps: float = 1e-6,
|
30 |
+
use_cache: bool = True,
|
31 |
+
pad_token_id: int = None,
|
32 |
+
bos_token_id: int = 1,
|
33 |
+
eos_token_id: int = 2,
|
34 |
+
tie_word_embeddings: bool = False,
|
35 |
+
fuse_norm: bool = True,
|
36 |
+
fuse_swiglu: bool = True,
|
37 |
+
fuse_cross_entropy: bool = True,
|
38 |
+
vocab_size: int = 32000,
|
39 |
+
n_future_tokens: int = 1,
|
40 |
+
use_custom_backward: Optional[bool] = False,
|
41 |
+
**kwargs,
|
42 |
+
):
|
43 |
+
self.hidden_size = hidden_size
|
44 |
+
self.num_hidden_layers = num_hidden_layers
|
45 |
+
self.num_heads = num_heads
|
46 |
+
self.num_kv_heads = num_kv_heads
|
47 |
+
self.qkv_bias = qkv_bias
|
48 |
+
self.qk_norm = qk_norm
|
49 |
+
self.window_size = window_size
|
50 |
+
self.rope_theta = rope_theta
|
51 |
+
self.max_position_embeddings = max_position_embeddings
|
52 |
+
|
53 |
+
self.hidden_ratio = hidden_ratio
|
54 |
+
self.intermediate_size = intermediate_size
|
55 |
+
self.hidden_act = hidden_act
|
56 |
+
|
57 |
+
self.initializer_range = initializer_range
|
58 |
+
self.elementwise_affine = elementwise_affine
|
59 |
+
self.norm_eps = norm_eps
|
60 |
+
self.use_cache = use_cache
|
61 |
+
|
62 |
+
self.fuse_norm = fuse_norm
|
63 |
+
self.fuse_swiglu = fuse_swiglu
|
64 |
+
self.fuse_cross_entropy = fuse_cross_entropy
|
65 |
+
self.vocab_size = vocab_size
|
66 |
+
|
67 |
+
self.n_future_tokens = n_future_tokens
|
68 |
+
self.use_custom_backward = use_custom_backward
|
69 |
+
|
70 |
+
super().__init__(
|
71 |
+
pad_token_id=pad_token_id,
|
72 |
+
bos_token_id=bos_token_id,
|
73 |
+
eos_token_id=eos_token_id,
|
74 |
+
tie_word_embeddings=tie_word_embeddings,
|
75 |
+
**kwargs,
|
76 |
+
)
|
fla/models/transformer_top/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (749 Bytes). View file
|
|
fla/modules/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (1.35 kB). View file
|
|
fla/modules/__pycache__/activations.cpython-312.pyc
ADDED
Binary file (23 kB). View file
|
|
fla/modules/__pycache__/convolution.cpython-312.pyc
ADDED
Binary file (21 kB). View file
|
|