zaydzuhri's picture
Add files using upload-large-folder tool
2c5a30a verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import json
import os
import time
from datetime import timedelta
from collections import defaultdict
import dataclasses
import torch
from datasets import interleave_datasets, load_dataset
from torch.distributed.elastic.multiprocessing.errors import record
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
import fla # noqa
from fla.modules.fused_linear_cross_entropy import FusedLinearCrossEntropyLoss
from fla.ops.common.utils import prepare_position_ids
from flame.components.checkpoint import TrainState
from flame.config_manager import JobConfig
from flame.data import build_dataloader, shuffle
from flame.models.parallelize_fla import parallelize_fla
from flame.models.pipeline_fla import pipeline_fla
from flame.tools.utils import get_nparams_and_flops
from flame.utils.checkpoint import cleanup_local_checkpoints
from flame.utils.convert_dcp_to_hf import save_pretrained
from flame.utils.hf_utils import upload_checkpoint_to_hf
from datetime import datetime
from torchtitan.components.checkpoint import CheckpointManager
from torchtitan.components.ft import FTParallelDims, init_ft_manager
from torchtitan.components.loss import build_cross_entropy_loss
from torchtitan.components.lr_scheduler import build_lr_schedulers
from torchtitan.components.metrics import build_device_memory_monitor, build_metrics_processor, ensure_pp_loss_visible
from torchtitan.components.optimizer import build_optimizers
from torchtitan.distributed import ParallelDims
from torchtitan.distributed import utils as dist_utils
from torchtitan.protocols.model_converter import build_model_converters
from torchtitan.protocols.train_spec import TrainSpec, get_train_spec, register_train_spec
from torchtitan.tools import utils
from torchtitan.tools.logging import init_logger, logger
from torchtitan.tools.profiling import maybe_enable_memory_snapshot, maybe_enable_profiling
from dotenv import load_dotenv
load_dotenv()
import wandb
wandb.login(key=os.environ["WANDB_API_KEY"])
import huggingface_hub
huggingface_hub.login(token=os.environ["HF_TOKEN"])
def build_tokenizer(job_config: JobConfig) -> AutoTokenizer:
return AutoTokenizer.from_pretrained(job_config.model.tokenizer_path)
register_train_spec(
TrainSpec(
name="fla",
cls=AutoModelForCausalLM,
config=AutoConfig,
parallelize_fn=parallelize_fla,
pipelining_fn=pipeline_fla,
build_optimizers_fn=build_optimizers,
build_lr_schedulers_fn=build_lr_schedulers,
build_dataloader_fn=build_dataloader,
build_tokenizer_fn=build_tokenizer,
build_loss_fn=build_cross_entropy_loss,
)
)
# Enable debug tracing on failure: https://pytorch.org/docs/stable/elastic/errors.html
@record
def main(job_config: JobConfig):
logger.info(f"Starting job: {job_config.job.description}")
if job_config.experimental.custom_model_path:
utils.import_module_from_path(job_config.experimental.custom_model_path)
# used for colorful printing
color = utils.NoColor if job_config.metrics.disable_color_printing else utils.Color
if job_config.job.print_args:
logger.info(
f"{color.green}{json.dumps(job_config.to_dict(), indent=2, sort_keys=True)}{color.reset}"
)
# take control of garbage collection to avoid stragglers
gc_handler = utils.GarbageCollection(gc_freq=job_config.training.gc_freq)
device_module, device_type = utils.device_module, utils.device_type
device = torch.device(f"{device_type}:{int(os.environ['LOCAL_RANK'])}")
# Device has to be set before creating TorchFT manager.
device_module.set_device(device)
ft_manager = init_ft_manager(job_config)
run_specific_repo_id = None
if getattr(job_config.checkpoint, "hf_upload_enabled", False):
hf_repo_base = getattr(job_config.checkpoint, "hf_repo_base_name", None)
if hf_repo_base:
# Generate timestamp (adjust format if desired)
timestamp = datetime.now().strftime("%Y%m%d-%H%M%S")
run_specific_repo_id = f"{hf_repo_base}-{timestamp}"
logger.info(f"Target Hugging Face repository for this run: {run_specific_repo_id}")
else:
logger.warning("HF Hub upload enabled, but 'checkpoint.hf_repo_base_name' is not set.")
# Disable upload if base name is missing
job_config.checkpoint.hf_upload_enabled = False
# init distributed
world_size = int(os.environ["WORLD_SIZE"])
if not ft_manager.enabled:
parallel_dims = ParallelDims(
dp_shard=job_config.training.data_parallel_shard_degree,
dp_replicate=job_config.training.data_parallel_replicate_degree,
cp=job_config.experimental.context_parallel_degree,
tp=job_config.training.tensor_parallel_degree,
pp=job_config.experimental.pipeline_parallel_degree,
world_size=world_size,
enable_loss_parallel=not job_config.training.disable_loss_parallel,
)
else:
parallel_dims = FTParallelDims(
dp_shard=job_config.training.data_parallel_shard_degree,
dp_replicate=job_config.training.data_parallel_replicate_degree,
cp=job_config.experimental.context_parallel_degree,
tp=job_config.training.tensor_parallel_degree,
pp=job_config.experimental.pipeline_parallel_degree,
world_size=world_size,
enable_loss_parallel=not job_config.training.disable_loss_parallel,
ft_manager=ft_manager,
)
dist_utils.init_distributed(job_config)
# initialize device memory monitor and get peak flops for MFU calculation
device_memory_monitor = build_device_memory_monitor()
gpu_peak_flops = utils.get_peak_flops(device_memory_monitor.device_name)
logger.info(f"Peak FLOPS used for computing MFU: {gpu_peak_flops:.3e}")
# build meshes
world_mesh = parallel_dims.build_mesh(device_type=device_type)
if parallel_dims.dp_enabled:
dp_mesh = world_mesh["dp"]
dp_degree, dp_rank = dp_mesh.size(), dp_mesh.get_local_rank()
else:
dp_degree, dp_rank = 1, 0
if parallel_dims.pp_enabled:
raise NotImplementedError(
"Pipeline parallelism is not supported in this version"
)
"""
! TODO[flame]: We need to fix the pipeline parallelism for flame
[x] Match the key of models' components with the actual naming
[ ] Fix the post-init and tie-embedding for pipeline parallelism, HF's transformer automatically
forces to tie if head is None, we need to handle this case
[ ]
"""
pp_mesh = world_mesh["pp"]
# Set random seed, and maybe enable deterministic mode (mainly for debugging, expect perf loss)
dist_utils.set_determinism(
world_mesh, device, job_config.training.seed, job_config.training.deterministic
)
train_spec = get_train_spec(job_config.model.name)
logger.info("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(
job_config.model.tokenizer_path,
trust_remote_code=True,
model_max_length=int(1e10),
)
logger.info(f"{tokenizer}")
logger.info(
f"Loading dataset {job_config.training.dataset}"
f":{job_config.training.dataset_name}"
if job_config.training.dataset_name is not None
else ""
)
min_num_shards = dp_degree * job_config.training.num_workers
if len(job_config.training.dataset.split(",")) == 1:
dataset = load_dataset(
path=job_config.training.dataset,
name=getattr(job_config.training, "dataset_name", None),
data_dir=getattr(job_config.training, "data_dir", None),
data_files=getattr(job_config.training, "data_files", None),
split=job_config.training.dataset_split or "train",
trust_remote_code=True,
streaming=job_config.training.streaming,
num_proc=(
job_config.training.num_workers
if not job_config.training.streaming
else None
),
)
logger.info(f"{dataset}")
logger.info(f"Shuffling the dataset with seed {job_config.training.seed}")
if not job_config.training.streaming:
# the states of map-style dataset is recoverable after shuffling
dataset = dataset.shuffle(
seed=job_config.training.seed
).to_iterable_dataset(num_shards=min_num_shards)
else:
if dataset.num_shards < min_num_shards:
logger.warning(
f"{color.red}"
f"Dataset {job_config.training.dataset} has insufficient shards ({dataset.num_shards}). "
f"Need {min_num_shards} shards minimum for {dp_degree} data parallel workers × "
f"{job_config.training.num_workers} dataloader workers. "
f"Disabling the streaming mode and resharding dataset to {min_num_shards} shards."
f"{color.reset}"
)
dataset = (
load_dataset(
path=job_config.training.dataset,
name=getattr(job_config.training, "dataset_name", None),
data_dir=getattr(job_config.training, "data_dir", None),
data_files=getattr(job_config.training, "data_files", None),
split=job_config.training.dataset_split or "train",
trust_remote_code=True,
streaming=False,
num_proc=job_config.training.num_workers,
)
.shuffle(seed=job_config.training.seed)
.to_iterable_dataset(num_shards=min_num_shards)
)
else:
dataset = shuffle(dataset, seed=job_config.training.seed)
else:
datasets = job_config.training.dataset.split(",")
if job_config.training.dataset_name is not None:
dataset_names = [
name or None for name in job_config.training.dataset_name.split(",")
]
assert len(dataset_names) == len(datasets), (
"The number of dataset names must match the number of datasets"
)
else:
dataset_names = [None] * len(datasets)
if job_config.training.dataset_split is not None:
dataset_splits = [
split or "train"
for split in job_config.training.dataset_split.split(",")
]
assert len(dataset_splits) == len(datasets), (
"The number of dataset splits must match the number of datasets"
)
else:
dataset_splits = ["train"] * len(datasets)
if job_config.training.data_dir is not None:
data_dirs = [
data_dir or None for data_dir in job_config.training.data_dir.split(",")
]
assert len(data_dirs) == len(datasets), (
"The number of data dirs must match the number of datasets"
)
else:
data_dirs = [None] * len(datasets)
if job_config.training.data_files is not None:
data_files = job_config.training.data_files.split(",")
assert len(data_files) == len(datasets), (
"The number of data files must match the number of datasets"
)
else:
data_files = [None] * len(datasets)
if job_config.training.data_probs is not None:
data_probs = [float(p) for p in job_config.training.data_probs.split(",")]
assert len(data_probs) == len(datasets), (
"The number of data probabilities must match the number of datasets"
)
else:
raise ValueError(
"Data sampling probabilities are required if using multiple datasets"
)
subsets = []
for i, prob in enumerate(data_probs):
subset = load_dataset(
path=datasets[i],
name=dataset_names[i],
data_dir=data_dirs[i],
data_files=data_files[i],
split=dataset_splits[i],
trust_remote_code=True,
streaming=job_config.training.streaming,
num_proc=(
job_config.training.num_workers
if not job_config.training.streaming
else None
),
)
logger.info(
f"Subset {color.cyan}{datasets[i]}"
+ (f":{dataset_names[i]} " if dataset_names[i] else " ")
+ f"(p = {prob:.3f}){color.reset}:\n"
+ f"{subset}"
)
logger.info(f"Shuffling the dataset with seed {job_config.training.seed}")
if not job_config.training.streaming:
# the states of map-style dataset is recoverable after shuffling
subset = subset.shuffle(
seed=job_config.training.seed
).to_iterable_dataset(num_shards=min_num_shards)
else:
if subset.num_shards < min_num_shards:
logger.warning(
f"{color.red}"
f"Dataset {datasets[i]} has insufficient shards ({subset.num_shards}). "
f"Need {min_num_shards} shards minimum for {dp_degree} data parallel workers × "
f"{job_config.training.num_workers} dataloader workers. "
f"Resharding dataset to {min_num_shards} shards and disabling streaming mode."
f"{color.reset}"
)
# again, it's ok to directly shuffle the map-style dataset
# we expect an error raised if the map-style dataset still has not enough data shards
subset = (
load_dataset(
path=datasets[i],
name=dataset_names[i],
data_dir=data_dirs[i],
data_files=data_files[i],
split=dataset_splits[i],
trust_remote_code=True,
streaming=False,
num_proc=job_config.training.num_workers,
)
.shuffle(seed=job_config.training.seed)
.to_iterable_dataset(min_num_shards)
)
else:
# we set relatively small buffer size here as interleaving could provide some randomness
subset = shuffle(
subset,
seed=job_config.training.seed,
buffer_size=max(128, 1024 // len(datasets)),
)
if "text" in subset.column_names:
subset = subset.select_columns("text")
elif "content" in subset.column_names:
subset = subset.select_columns("content")
else:
raise ValueError(
f"Subset {datasets[i]} has no 'text' or 'content' column"
)
subsets.append(subset)
logger.info(
f"Interleaving {len(subsets)} datasets with probabilities {data_probs}"
)
dataset = interleave_datasets(
datasets=subsets,
probabilities=data_probs,
stopping_strategy="all_exhausted",
seed=job_config.training.seed,
)
logger.info(f"{dataset}")
logger.info(f"Loading model config from {job_config.model.config}")
model_config = AutoConfig.from_pretrained(job_config.model.config)
logger.info("Building dataloader...")
dataloader = build_dataloader(
dataset=dataset,
tokenizer=tokenizer,
rank=dp_rank,
world_size=dp_degree,
batch_size=job_config.training.batch_size,
# TODO: Make this more modular
# seq_len=job_config.training.seq_len if not model_config.use_top_loss else job_config.training.seq_len*2,
seq_len=job_config.training.seq_len * 2,
context_len=job_config.training.context_len,
varlen=job_config.training.varlen,
num_workers=job_config.training.num_workers,
pin_memory=job_config.training.pin_memory,
persistent_workers=job_config.training.persistent_workers,
snapshot_every_n_steps=job_config.checkpoint.interval,
)
# set the model configs from training inputs:
# 1. norm type to decide which norm layer to use
# 2. disable fused norm if TP is enabled
# 3. vocab size from tokenizer
# 4. context_len base on inputs
if parallel_dims.tp_enabled:
if model_config.fuse_norm:
logger.warning(
f"{color.red}"
f"Fused norm is not compatible with tensor parallelism. "
f"Disabling it for now."
f"{color.reset}"
)
model_config.fuse_norm = False
if parallel_dims.loss_parallel_enabled:
if model_config.fuse_cross_entropy:
logger.warning(
f"{color.red}"
f"Loss parallel enabled. Disabling fused cross entropy for now."
f"{color.reset}"
)
model_config.fuse_cross_entropy = False
model_config.vocab_size = max(tokenizer.vocab_size, model_config.vocab_size)
logger.info(
f"Building model from the config\n{color.green}{model_config}{color.reset}"
)
with torch.device("meta"):
model = AutoModelForCausalLM.from_config(model_config)
if (
getattr(model_config, "fuse_cross_entropy", False)
and FusedLinearCrossEntropyLoss is not None
):
model.criterion = FusedLinearCrossEntropyLoss(
num_chunks=8 // parallel_dims.tp
)
# defer weight initialization until after parallelisms are applied
model.apply(lambda m: setattr(m, "_is_hf_initialized", False))
logger.info(f"{color.blue}\n{model}{color.reset}\n")
# Build the collection of model converters. No-op if `model.converters` empty
model_converters = build_model_converters(job_config, parallel_dims)
model_converters.convert(model)
# calculate model size and flops per token
model_param_count, num_flops_per_token = get_nparams_and_flops(
model, model_config, job_config.training.context_len
)
# move sharded model to CPU/GPU and initialize weights via DTensor
if job_config.checkpoint.create_seed_checkpoint:
init_device = "cpu"
elif job_config.training.enable_cpu_offload:
init_device = "cpu"
else:
init_device = device_type
# apply parallelisms and initialization
if parallel_dims.pp_enabled:
# apply PT-D Pipeline Parallel
(
pp_schedule,
model_parts,
has_first_stage,
has_last_stage,
) = train_spec.pipelining_fn(
model,
pp_mesh,
parallel_dims,
job_config,
device,
model_config,
train_spec.loss_fn,
)
# when PP is enabled, `model` obj is no longer used after this point, model_parts is used instead
del model
# For PP with looped schedules, each item in model_parts is one stage-model-chunk.
# We need to iterate through model_parts to apply SPMD parallelisms, compilation,
# optimizer, and checkpointing
for m in model_parts:
# apply SPMD-style PT-D techniques
train_spec.parallelize_fn(m, world_mesh, parallel_dims, job_config)
m.to_empty(device=init_device)
with torch.no_grad():
m.post_init()
m.train()
# confirm that user will be able to view loss metrics on the console
ensure_pp_loss_visible(parallel_dims, job_config, color)
else:
# apply PT-D Tensor Parallel, activation checkpointing, torch.compile, Data Parallel
train_spec.parallelize_fn(model, world_mesh, parallel_dims, job_config)
model.to_empty(device=init_device)
with torch.no_grad():
model.post_init()
model.train()
model_parts = [model]
device_mem_stats = device_memory_monitor.get_peak_stats()
logger.info(
f"{device_type.upper()} memory usage for model: "
f"{device_mem_stats.max_reserved_gib:.2f}GiB"
f"({device_mem_stats.max_reserved_pct:.2f}%)"
)
# build optimizer after applying parallelisms to the model
optimizers = train_spec.build_optimizers_fn(model_parts, job_config, ft_manager)
lr_schedulers = train_spec.build_lr_schedulers_fn(optimizers, job_config)
# Post optimizer step model converters hook.
# e.g. calculate float8 dynamic amax/scale for all-parameter for FSDP2
# where it issues a single all-reduce for all parameters at once for better performance
optimizers.register_step_post_hook(
lambda *args, **kwargs: model_converters.post_optimizer_hook(model_parts)
)
train_state = TrainState()
# load initial checkpoint
checkpoint = CheckpointManager(
dataloader=dataloader,
model_parts=model_parts,
optimizers=optimizers,
lr_schedulers=lr_schedulers,
states={"train_state": train_state},
job_config=job_config,
ft_manager=ft_manager,
)
if job_config.checkpoint.create_seed_checkpoint:
assert world_size == 1, (
"Must create seed checkpoint using a single device, to disable sharding"
)
assert job_config.checkpoint.enable_checkpoint, (
"Must enable checkpointing when creating a seed checkpoint"
)
checkpoint.save(curr_step=0, force=True)
logger.info("Created seed checkpoint")
return
checkpoint.load(step=job_config.checkpoint.load_step)
metric_logger = build_metrics_processor(job_config, parallel_dims)
# Set dependent attributes for metric_logger
metric_logger.num_flops_per_token = num_flops_per_token
metric_logger.optimizers = optimizers # Pass optimizers if needed by logger logic
metric_logger.lr_schedulers = (
lr_schedulers # Pass schedulers if needed by logger logic
)
# plot losses loaded from checkpoint (if any) to TensorBoard
# NOTE: Loss info after the last log step before checkpoint saving will not be ploted.
# This can be avoided by setting checkpoint.interval to be a multiple of metrics.log_freq
if train_state.step > 0 and len(metric_logger.data_loading_times) > 0:
for idx, step in enumerate(train_state.log_steps):
metric_logger.log(
step,
global_avg_loss=train_state.global_avg_losses[idx],
global_max_loss=train_state.global_max_losses[idx],
)
data_iterator = iter(dataloader)
train_context = dist_utils.get_train_context(
parallel_dims.loss_parallel_enabled,
job_config.experimental.enable_compiled_autograd,
)
# variables used to keep info for metrics logging
device_memory_monitor.reset_peak_stats()
global_batch_size = (
job_config.training.batch_size
* dp_degree
* job_config.training.gradient_accumulation_steps
)
num_tokens_per_step = global_batch_size * job_config.training.seq_len
# train loop
logger.info(f"{color.red}***** Running training *****{color.reset}")
logger.info(f"{color.green} Training starts at step {train_state.step + 1}")
logger.info(
f"{color.green} Number of tokens per sequence = {job_config.training.seq_len:,}"
)
logger.info(
f"{color.green} Gradient Accumulation steps = {job_config.training.gradient_accumulation_steps}"
)
logger.info(
f"{color.green} Instantaneous batch size (per device) = {job_config.training.batch_size:,}"
)
logger.info(
f"{color.green} Global batch size (w. parallel, distributed & accumulation) = {global_batch_size:,}"
f" ({num_tokens_per_step:,} tokens)"
)
logger.info(
f"{color.green} Total optimization steps = {job_config.training.steps:,} "
f"({job_config.training.steps * num_tokens_per_step:,} tokens)"
)
logger.info(
f"{color.green} Warmup steps = {job_config.lr_scheduler.warmup_steps:,}"
f" ({job_config.lr_scheduler.warmup_steps * num_tokens_per_step:,} tokens)"
)
logger.info(
f"{color.green} Number of parameters = {model_param_count:,} {color.reset}"
)
with (
maybe_enable_profiling(
job_config, global_step=train_state.step
) as torch_profiler,
maybe_enable_memory_snapshot(
job_config, global_step=train_state.step
) as memory_profiler,
):
while train_state.step < job_config.training.steps:
train_state.step += 1
gc_handler.run(train_state.step)
optimizers.zero_grad()
losses = defaultdict(list)
actual_loss = []
# do gradient accumulation if enabled
for _ in range(job_config.training.gradient_accumulation_steps):
# get batch
data_load_start = time.perf_counter()
batch = next(data_iterator)
# Recall that this is, for top and MTP, it will be
# input_ids : (B, seq_len)
# labels : (B, seq_len * 2)
input_ids, labels = batch["input_ids"][:, :job_config.training.seq_len], batch["labels"]
# Update metrics processor state before forward/backward
metric_logger.ntokens_since_last_log += input_ids.numel()
metric_logger.data_loading_times.append(
time.perf_counter() - data_load_start
)
input_ids = input_ids.to(device_type)
"""
TODO[flame]: We need to carefully handle the position_ids for TP/CP
Depending on the Models'PE, the position_ids might be different.
e.g. for TP
For RoPE, all ranks have the same position_ids. [FOR HF model]
For sinusoidal, each rank has the coresponding chunked position_ids. [FOR HF model]
e.g. for CP, [optional_context_parallel_ctx shoudl automatically distbute the position_ids]
Each rank has the coresponding chunked position_ids. [FOR All model]
"""
labels = labels.to(device_type)
cu_seqlens = (
batch["cu_seqlens"].to(device_type)
if "cu_seqlens" in batch
else None
)
if cu_seqlens is not None:
position_ids = prepare_position_ids(cu_seqlens).to(torch.int32)
else:
position_ids = (
torch.arange(0, input_ids.shape[1], device=device_type)
.repeat(input_ids.shape[0], 1)
.to(torch.int32)
)
# apply context parallelism if cp is enabled
# ensure CP handles the separate freqs_cis buffer for each pp stage
optional_context_parallel_ctx = (
dist_utils.create_context_parallel_ctx(
cp_mesh=world_mesh["cp"],
cp_buffers=[input_ids, labels, position_ids],
cp_seq_dims=[1, 1, 1],
cp_no_restore_buffers={input_ids, labels, position_ids},
cp_rotate_method=job_config.experimental.context_parallel_rotate_method,
)
if parallel_dims.cp_enabled
else None
)
# #! TODO[flame], we should distribute the position_ids as well with CP
if parallel_dims.pp_enabled:
raise NotImplementedError(
"Pipeline parallelism is not supported in this version"
)
# Pipeline Parallel forward / backward inside step() call
with train_context(optional_context_parallel_ctx):
targets, losses = (
(labels, []) if has_last_stage else (None, None)
)
if has_first_stage:
pp_schedule.step(input_ids, target=targets, losses=losses)
else:
pp_schedule.step(target=targets, losses=losses)
# accumulate losses across pipeline microbatches
# TODO: PP+FSDP unexpectedly puts the loss back to the CPU
loss = (
torch.mean(torch.stack(losses)).to(device)
if has_last_stage
else torch.tensor([-1.0], device=device)
)
else:
# Non-PP forward / backward
with train_context(optional_context_parallel_ctx):
output = model(
input_ids=input_ids,
labels=labels,
position_ids=position_ids,
cu_seqlens=cu_seqlens,
)
output_attributes = [field.name for field in dataclasses.fields(output)]
losses_atributes = [x for x in output_attributes if "loss" in x and x != "loss"]
loss = (
output.loss
/ job_config.training.gradient_accumulation_steps
)
loss.backward()
actual_loss.append(loss)
for loss_attr in losses_atributes:
custom_loss = getattr(output, loss_attr, None)
if custom_loss is not None:
custom_loss = custom_loss / job_config.training.gradient_accumulation_steps
custom_loss = custom_loss
losses[loss_attr].append(custom_loss)
loss = sum(actual_loss)
for loss_attr, loss_values in losses.items():
losses[loss_attr] = sum(loss_values)
# clip gradients
grad_norm = dist_utils.clip_grad_norm_(
[p for m in model_parts for p in m.parameters()],
job_config.training.max_norm,
foreach=True,
pp_mesh=pp_mesh if parallel_dims.pp_enabled else None,
)
# optimizer step
checkpoint.maybe_wait_for_staging()
if job_config.training.skip_nan_inf and (
grad_norm.isnan() or grad_norm.isinf()
):
logger.warning(
f"Skipping optimizer step - detected invalid gradient norm: {grad_norm:.4f}"
)
optimizers.zero_grad()
train_state.skipped_step += 1
else:
optimizers.step()
lr_schedulers.step()
# log metrics - Use MetricsProcessor
global_avg_custom_loss = {}
global_max_custom_loss = {}
if metric_logger.should_log(train_state.step):
if (
parallel_dims.dp_replicate_enabled
or parallel_dims.dp_shard_enabled
or parallel_dims.cp_enabled
):
loss = loss.detach()
# Use dist_mean/max on the accumulated loss for the step
global_avg_loss, global_max_loss = (
dist_utils.dist_mean(
loss,
world_mesh["dp_cp"],
),
dist_utils.dist_max(
loss,
world_mesh["dp_cp"],
),
)
for loss_attr, loss_value in losses.items():
global_avg_custom_loss[loss_attr] = dist_utils.dist_mean(
loss_value, world_mesh["dp_cp"]
)
global_max_custom_loss[loss_attr] = dist_utils.dist_max(
loss_value, world_mesh["dp_cp"]
)
else:
# Scale back the loss before logging
global_avg_loss = global_max_loss = loss.item()
for loss_attr, loss_value in losses.items():
global_avg_custom_loss[loss_attr] = global_max_custom_loss[
loss_attr
] = loss_value.item()
# Update train state tokens and elapsed time
time_now = time.perf_counter()
time_delta = (
time_now - metric_logger.time_last_log
) # Use metric_logger's time
train_state.token += (
metric_logger.ntokens_since_last_log # Use tokens tracked by metric_logger
* parallel_dims.world_size
/ parallel_dims.non_data_parallel_size
)
train_state.elapsed += timedelta(seconds=time_delta)
train_state.log_steps.append(train_state.step)
train_state.global_avg_losses.append(global_avg_loss)
train_state.global_max_losses.append(global_max_loss)
# Log using the metric processor
last_lr = lr_schedulers.schedulers[0].get_last_lr()[0]
eta = (
train_state.elapsed
* (job_config.training.steps - train_state.step)
/ train_state.step
)
extra_metrics = {
"optimizer/lr": last_lr,
"optimizer/grad_norm": grad_norm.item(),
"optimizer/skipped_step": train_state.skipped_step,
}
for loss_attr, loss_value in global_avg_custom_loss.items():
extra_metrics[f"loss_metrics/global_avg_{loss_attr}"] = loss_value.item() if isinstance(loss_value, torch.Tensor) else loss_value
metric_logger.log(
train_state.step,
global_avg_loss,
global_max_loss,
extra_metrics=extra_metrics,
)
logger.info(
f"{color.blue}lr: {last_lr:.4e} gnorm: {grad_norm:5.2f} "
f"{color.magenta}[{str(train_state.elapsed).split('.')[0]:>8}<{str(eta).split('.')[0]:>8}]{color.reset}"
)
checkpoint.save(
train_state.step, force=(train_state.step == job_config.training.steps)
)
if torch.distributed.get_rank() == 0:
if job_config.checkpoint.enable_checkpoint:
hf_target_path = None
dcp_save_path = os.path.join(job_config.job.dump_folder, job_config.checkpoint.folder, f"step-{train_state.step}")
# TODO: Haven't tested this one yet
if getattr(job_config.checkpoint, "convert_to_hf_on_save", False):
try:
# Get the path where DCP was just saved
# Check CheckpointManager API for the best way, assuming get_save_path exists
hf_target_path = f"{dcp_save_path}" # e.g., .../checkpoint/step-1000-hf
logger.info(f"Converting step {train_state.step} DCP checkpoint to HF format at: {hf_target_path}")
save_pretrained( # Call the imported function
path=hf_target_path, # Pass target HF path as 'path'
step=train_state.step,
config=job_config.model.config, # Pass model config path/id
tokenizer=job_config.model.tokenizer_path # Pass tokenizer path/id
)
logger.info(f"Successfully converted step {train_state.step} to HF format.")
except Exception as e:
logger.error(f"Failed to convert checkpoint step {train_state.step} to HF format: {e}", exc_info=True)
base_checkpoint_dir = os.path.join(job_config.job.dump_folder, job_config.checkpoint.folder)
if getattr(job_config.checkpoint, "hf_upload_enabled", True):
upload_format = getattr(job_config.checkpoint, "hf_upload_format", "hf")
keep_k_hub = getattr(job_config.checkpoint, "hf_keep_latest_k", 5)
local_path_to_upload = None
if upload_format == "hf":
if hf_target_path and os.path.isdir(hf_target_path):
local_path_to_upload = hf_target_path
elif upload_format == "dcp":
if dcp_save_path and os.path.isdir(dcp_save_path):
local_path_to_upload = dcp_save_path
if local_path_to_upload:
try:
upload_checkpoint_to_hf(
local_path=local_path_to_upload,
step=train_state.step,
hf_repo_id_for_run=run_specific_repo_id,
upload_format=upload_format,
hf_keep_latest_k=job_config.checkpoint.keep_latest_k,
)
except Exception as e:
logger.error(f"Failed during HF Hub upload for step {train_state.step}: {e}", exc_info=True)
# signal the profiler that the next profiling step has started
if torch_profiler:
torch_profiler.step()
if memory_profiler:
memory_profiler.step()
# reduce timeout after first train step for faster signal
# (assuming lazy init and compilation are finished)
if train_state.step == 1:
dist_utils.set_pg_timeouts(
timeout=timedelta(seconds=job_config.comm.train_timeout_seconds),
world_mesh=world_mesh,
)
if torch.distributed.get_rank() == 0:
logger.info("Sleeping 2 seconds for other ranks to complete")
time.sleep(2)
metric_logger.close()
logger.info("Training completed")
if __name__ == "__main__":
init_logger()
config = JobConfig()
config.parse_args()
main(config)
torch.distributed.destroy_process_group()