# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import functools from typing import Any, Generic, Iterator, TypeVar import torch import torch.nn as nn from torch.distributed.checkpoint.state_dict import ( get_optimizer_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.checkpoint.stateful import Stateful from torch.optim import Optimizer from torchtitan.components.ft import FTManager, has_torchft from torchtitan.config_manager import JobConfig __all__ = [ "OptimizersContainer", "build_optimizers", ] if has_torchft: import torchft as ft T = TypeVar("T", bound=Optimizer) class OptimizersContainer(Optimizer, Stateful, Generic[T]): """A container for multiple optimizers. This class is used to wrap multiple optimizers into a single object that can be used to reduce the complexity of the training loop. This mimics the behavior of ``torch.optim.Optimizer``. This class currently only supports ``Adam`` and ``AdamW``. **Note** Users who want to customize the optimizer behavior can inherit from this class and extend the functionality as needed. The following methods must follow the same signature as ``torch.optim.Optimizer`` class: ``step()``, ``zero_grad()``, ``state_dict()``, ``load_state_dict()``. **Limitations** This class assumes that all the optimizers are the same type and have the same configurations. With this assumption, TorchTitan can support lr scheduler resharding (e.g., loading a checkpoint with a different number of GPUs and/or different parallelization strategy). Note that ``get_optimizer_state_dict`` already enables the resharding for the optimizer state but not for the lr scheduler state, hence the limitation. Args: model_parts (List[nn.Module]): List of model parts to be optimized. optimizer_kwargs (Dict[str, Any]): Keyword arguments for the optimizers. name (str): Name of the optimizers. """ optimizers: list[T] model_parts: list[nn.Module] def __init__( self, model_parts: list[nn.Module], optimizer_cls: type[T], optimizer_kwargs: dict[str, Any], ) -> None: all_params = [] self.optimizers = [] self.model_parts = model_parts for model in self.model_parts: params = [p for p in model.parameters() if p.requires_grad] self.optimizers.append(optimizer_cls(params, **optimizer_kwargs)) all_params.extend(params) self._validate_length(len(self.model_parts)) self._post_init(all_params, optimizer_kwargs) def __iter__(self) -> Iterator[T]: return iter(self.optimizers) def __len__(self) -> int: return len(self.optimizers) def step(self, *args, **kwargs) -> None: for optimizer in self.optimizers: optimizer.step(*args, **kwargs) def zero_grad(self, *args, **kwargs) -> None: for optimizer in self.optimizers: optimizer.zero_grad(*args, **kwargs) def state_dict(self) -> dict[str, Any]: func = functools.partial( get_optimizer_state_dict, options=StateDictOptions(flatten_optimizer_state_dict=True), ) return { k: v for sd in map(func, self.model_parts, self.optimizers) for k, v in sd.items() } def load_state_dict(self, state_dict: dict[str, Any]) -> None: func = functools.partial( set_optimizer_state_dict, optim_state_dict=state_dict, options=StateDictOptions(flatten_optimizer_state_dict=True), ) list(map(func, self.model_parts, self.optimizers)) def _validate_length(self, expected_length: int) -> None: assert expected_length == len(self.optimizers), ( "Must pass one optimizer per model part or per param if " "using OptimizersInBackwardContainer." ) def _post_init( self, all_params: list[nn.Parameter], optimizer_kwargs: dict[str, Any] ) -> None: # We need to call Optimizer.__init__() to initialize some necessary optimizer # functionality such as hooks. Optimizer.__init__(self, all_params, optimizer_kwargs) class OptimizersInBackwardContainer(OptimizersContainer): """OptimizersContainer for executing ``optim.step()`` in backward pass. This class extend ``OptimizersContainer`` to support optimizer step in backward pass. ``step()`` and ``zero_grad()`` are no-op in this class. Instead, ``register_post_accumulate_grad_hook`` is used to register a hook to execute these methods when the gradient is accumulated. """ def __init__( self, model_parts: list[nn.Module], optimizer_cls: type[T], optimizer_kwargs: dict[str, Any], ) -> None: all_params = [] self.model_parts = model_parts optim_dict = {} for model in self.model_parts: for p in model.parameters(): if p.requires_grad: optim_dict[p] = optimizer_cls([p], **optimizer_kwargs) all_params.append(p) def optim_hook(param) -> None: optim_dict[param].step() optim_dict[param].zero_grad() for model in self.model_parts: for param in model.parameters(): if param.requires_grad: param.register_post_accumulate_grad_hook(optim_hook) self.optimizers = list(optim_dict.values()) self._validate_length( sum(len(list(model.parameters())) for model in self.model_parts) ) self._post_init(all_params, optimizer_kwargs) def step(self) -> None: pass def zero_grad(self) -> None: pass class FTOptimizersContainer(OptimizersContainer): def __init__( self, model_parts: list[nn.Module], optimizer_cls: type[T], optimizer_kwargs: dict[str, Any], ft_manager: "ft.Manager", ) -> None: super().__init__(model_parts, optimizer_cls, optimizer_kwargs) # Force to initialize the optimizer state so that `optim.step()` # won't be called by state_dict() and load_state_dict(). _ = { k: v for sd in map(get_optimizer_state_dict, model_parts, self.optimizers) for k, v in sd.items() } self.cache_state_dict: dict[str, Any] = {} self._ft_optimizer = ft.Optimizer(ft_manager, self) self._call_from_ft: bool = False def init_cache_state_dict(self) -> None: self.cache_state_dict = super().state_dict() def state_dict(self) -> dict[str, Any]: return self.cache_state_dict def load_state_dict(self, state_dict: dict[str, Any]) -> None: # We have to invalidate the `cache_state_dict` because optimizer uses # assign instead of copy when doing `load_state_dict()`. Without # invalidating the `cache_state_dict`, there will be memory leakage. self.cache_state_dict = {} super().load_state_dict(state_dict) self.init_cache_state_dict() def step(self, *args, **kwargs) -> None: """Calling the correct step() depending on the caller. TorchFT's OptimizerWrapper.step() is designed to be callled only once per train step per ft.Manager regardless how many optimizers are used. Hence we will need to appropriately dispatch the call. """ if self._call_from_ft: super().step(*args, **kwargs) else: self._call_from_ft = True self._ft_optimizer.step(*args, **kwargs) self._call_from_ft = False def zero_grad(self, *args, **kwargs) -> None: """Calling the correct zero_grad() depending on the caller. Check the comment in ``step()``. """ if self._call_from_ft: super().zero_grad(*args, **kwargs) else: self._call_from_ft = True self._ft_optimizer.zero_grad(*args, **kwargs) self._call_from_ft = False def build_optimizers( model_parts: list[nn.Module], job_config: JobConfig, ft_manager: FTManager, ) -> OptimizersContainer: """Create a OptimizersContainer for the given model parts and job config. This function creates a ``OptimizersContainer`` for the given model parts. ``job_config`` should define the correct optimizer name and parameters. This function currently supports creating ``OptimizersContainer`` and ``OptimizersInBackwardContainer``. **Note** Users who want to customize the optimizer behavior can create their own ``OptimizersContainer`` subclass and ``build_optimizers``. Passing the customized ``build_optimizers`` to ``TrainSpec`` will create the customized ``OptimizersContainer``. Args: model_parts (List[nn.Module]): List of model parts to be optimized. job_config (JobConfig): Job config containing the optimizer name and parameters. """ optim_in_bwd = job_config.optimizer.early_step_in_backward if optim_in_bwd and job_config.parallelism.pipeline_parallel_degree > 1: raise NotImplementedError( "Optimizers in backward is not supported with pipeline parallelism." ) name = job_config.optimizer.name lr = job_config.optimizer.lr eps = job_config.optimizer.eps optim_implementation = job_config.optimizer.implementation assert optim_implementation in ["fused", "foreach", "for-loop"] fused = optim_implementation == "fused" foreach = optim_implementation == "foreach" optimizer_kwargs = { "lr": lr, "eps": eps, "betas": (0.9, 0.95), "weight_decay": 0.1, "fused": fused, "foreach": foreach, } optimizer_classes = { "Adam": torch.optim.Adam, "AdamW": torch.optim.AdamW, } if name not in optimizer_classes: raise NotImplementedError(f"Optimizer {name} not added.") optimizer_cls = optimizer_classes[name] if optim_in_bwd and ft_manager.enabled: raise ValueError("TorchFT is not supported with optimizers in backward.") elif optim_in_bwd: return OptimizersInBackwardContainer( model_parts, optimizer_cls, optimizer_kwargs ) elif ft_manager.enabled: return FTOptimizersContainer( model_parts, optimizer_cls, optimizer_kwargs, ft_manager.manager ) else: return OptimizersContainer(model_parts, optimizer_cls, optimizer_kwargs)