# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import argparse import importlib import inspect import os import sys from collections import defaultdict from typing import Tuple, Union import torch try: import tomllib except ModuleNotFoundError: import tomli as tomllib from torchtitan.tools.logging import logger TORCH_DTYPE_MAP = { "float16": torch.float16, "float32": torch.float32, "bfloat16": torch.bfloat16, } def string_list(raw_arg): """Comma-separated string list argument.""" return [s.strip() for s in raw_arg.split(",") if s.strip()] def check_string_list_argument(args_dict: dict[str, any], fullargname: str): section, name = fullargname.split(".") # Split string list which are still raw strings. if ( section in args_dict and name in args_dict[section] and isinstance(args_dict[section][name], str) ): sec = args_dict[section] sec[name] = string_list(sec[name]) class JobConfig: """ A helper class to manage the train configuration. Semantics: - Default config is loaded from a toml file. If no toml file is provided, then the default config is loaded from argparse defaults. - if toml file has missing keys, they are filled with argparse defaults. - if additional explicit cmd args are provided in addition to the toml file, they will override the toml config and the argparse defaults precedence order: cmdline > toml > argparse default Arg parsing semantics: Each argument starts with _ which is the section name in the toml file followed by name of the option in the toml file. For ex, model.name translates to: [model] name in the toml file """ def __init__(self): self.args_dict = None # main parser self.parser = argparse.ArgumentParser(description="torchtitan arg parser.") self.parser.add_argument( "--job.config_file", type=str, default=None, help="Job config file", ) # job level configs self.parser.add_argument( "--job.dump_folder", type=str, default="./torchtitan/outputs", help="Folder to dump job outputs", ) self.parser.add_argument( "--job.description", type=str, default="default job", help="Description of the job", ) self.parser.add_argument( "--job.use_for_integration_test", action="store_true", help="Add this config to the integration test suite", ) self.parser.add_argument( "--job.print_args", action="store_true", help="Print the args to terminal", ) # profiling configs self.parser.add_argument( "--profiling.enable_profiling", action="store_true", help="Whether to enable pytorch profiler", ) self.parser.add_argument( "--profiling.save_traces_folder", type=str, default="profile_traces", help="Trace files location", ) self.parser.add_argument( "--profiling.profile_freq", type=int, default=10, help="How often to collect profiler traces, in iterations", ) self.parser.add_argument( "--profiling.enable_memory_snapshot", action="store_true", help="Whether to dump memory snapshot", ) self.parser.add_argument( "--profiling.save_memory_snapshot_folder", type=str, default="memory_snapshot", help="Memeory snapshot files location", ) # metrics configs self.parser.add_argument( "--metrics.log_freq", type=int, default=10, help="How often to log metrics to TensorBoard, in iterations", ) self.parser.add_argument( "--metrics.enable_tensorboard", action="store_true", help="Whether to log metrics to TensorBoard", ) self.parser.add_argument( "--metrics.disable_color_printing", action="store_true", help="Whether to disable color printing in logs", ) self.parser.add_argument( "--metrics.save_tb_folder", type=str, default="tb", help="Folder to dump TensorBoard states", ) self.parser.add_argument( "--metrics.save_for_all_ranks", action="store_true", default=False, help=""" Whether to save TensorBoard/Wandb metrics only for rank 0 or for all ranks. When this option is False and pipeline_parallel_degree is > 1, the metrics component uses the 0th rank of the last stage pipeline group, which is the only stage that computes loss metrics. """, ) self.parser.add_argument( "--metrics.enable_wandb", action="store_true", help="Whether to log metrics to Weights & Biases", ) # model configs self.parser.add_argument( "--model.name", type=str, default="llama3", help="Which model to train", ) self.parser.add_argument( "--model.flavor", type=str, default="debugmodel", help="Which model config to train", ) self.parser.add_argument( "--model.norm_type", type=str, default="rmsnorm", choices=["layernorm", "np_layernorm", "rmsnorm"], help="Type of layer normalization to use [layernorm, np_layernorm, rmsnorm]", ) self.parser.add_argument( "--model.use_flex_attn", action="store_true", help=""" Whether to use Flex Attention. Mixed usage of SDPA and FlexAttention is not upported yet. """, ) self.parser.add_argument( "--model.attn_mask_type", type=str, default="causal", choices=["causal", "block_causal"], help=""" Specifies the type of bias/mask used for attention. If SDPA is used, only the causal mask is supported by default. If FlexAttention is used, both causal and block_causal masks are supported. """, ) self.parser.add_argument( "--model.tokenizer_path", type=str, default="./assets/tokenizer/original/tokenizer.model", help="Tokenizer path", ) self.parser.add_argument( "--model.converters", type=string_list, nargs="+", default=[], help=""" Comma separated list of converters to apply to the model. For instance, the `float8` converter swaps `torch.nn.Linear` with `Float8Linear`. This feature requires you to install 'torchao' which can be found here: https://github.com/pytorch/ao """, ) self.parser.add_argument( "--model.print_after_conversion", action="store_true", help=""" If true, model definition will be printed to stdout after all model converters have been applied. """, ) # optimizer configs self.parser.add_argument( "--optimizer.name", type=str, default="AdamW", help="Optimizer to use" ) self.parser.add_argument( "--optimizer.lr", type=float, default=8e-4, help="Learning rate to use" ) self.parser.add_argument( "--optimizer.eps", type=float, default=1e-8, help="Epsilon value to use" ) self.parser.add_argument( "--optimizer.implementation", type=str, default="fused", choices=["for-loop", "foreach", "fused"], help=""" Specify which optimizer implementation to use: - 'fused': Use fused implementation (CUDA only) for best performance. - 'foreach': Use some horizontal fusion of tensors for better performance. - 'for-loop': Use the default implementation for the optimizer (slowest). - more info: https://pytorch.org/docs/stable/optim.html """, ) self.parser.add_argument( "--optimizer.early_step_in_backward", action="store_true", help=""" Whether to apply optimizer in the backward. Caution, optimizer_in_backward is not compatible with gradients clipping, users should not call register_post_accumulate_grad_hook after the optimizer is built.""", ) # lr scheduler configs self.parser.add_argument( "--lr_scheduler.warmup_steps", type=int, default=200, help="Steps for lr scheduler warmup, normally 1/5 of --training.steps", ) self.parser.add_argument( "--lr_scheduler.decay_ratio", type=float, default=None, help=""" Controls the proportion of the training steps allocated to the learning rate decay phase. If `None`, the learning rate will begin decaying immediately after the warmup period. Otherwise, the learning rate will remain stable after the warmup period and only start decaying during the last `decay_ratio` portion of the total training steps. This is known as the Warmup-Stable-Decay (WSD) schedule, as described in https://arxiv.org/abs/2404.06395. """, ) self.parser.add_argument( "--lr_scheduler.decay_type", type=str, default="linear", choices=["linear", "sqrt", "cosine"], help=""" Learning rate decay type to use during training: - 'linear': linearly decays learning rate from initial to final value - 'sqrt': decays learning rate following a 1 minus square root curve - 'cosine': smoothly decays learning rate following a cosine curve """, ) self.parser.add_argument( "--lr_scheduler.lr_min", type=float, default=0.0, help=""" Min lr ratio for lr scheduler. If provided, the range of decay factor is scaled from 1 to `lr_min` to ensure the learning rate does not drop below `optimizer.lr * lr_scheduler.lr_min`. """, ) # training configs self.parser.add_argument( "--training.dataset", type=str, default="c4_test", help="Dataset to use" ) self.parser.add_argument( "--training.dataset_path", type=str, help=""" Path to the dataset in the file system. If provided, data will be loaded from this path instead of downloaded.""", ) self.parser.add_argument( "--training.batch_size", type=int, default=8, help="Batch size" ) self.parser.add_argument( "--training.seq_len", type=int, default=2048, help="Sequence length" ) self.parser.add_argument( "--training.max_norm", type=Union[float, int], default=1.0, help="Max norm for gradient clipping", ) self.parser.add_argument( "--training.steps", type=int, default=10000, help="How many train steps to run", ) self.parser.add_argument( "--training.enable_cpu_offload", action="store_true", help=""" Whether to apply CPU offloading of parameters, gradients, and optimizer states in FSDP""", ) self.parser.add_argument( "--training.mixed_precision_param", type=str, default="bfloat16", choices=["bfloat16", "float32"], help=""" torch dtype to use for parameters when applying mixed precision via FSDP. This feature only takes effect when data_parallel_shard_degree > 1 """, ) self.parser.add_argument( "--training.mixed_precision_reduce", type=str, default="float32", choices=["float32"], help=""" torch dtype to use for reductions when applying mixed precision via FSDP. This feature only takes effect when data_parallel_shard_degree > 1 """, ) self.parser.add_argument( "--training.compile", action="store_true", help="Whether to compile the model", ) self.parser.add_argument( "--training.gc_freq", type=int, default=50, help="Python garbage control scheduling interval, in steps", ) self.parser.add_argument( "--training.seed", type=int, default=None, help="Choose the base RNG seed used for training", ) self.parser.add_argument( "--training.deterministic", action="store_true", help="Use deterministic algorithms wherever possible, may be slower", ) # parallelism configs self.parser.add_argument( "--parallelism.data_parallel_replicate_degree", type=int, default=1, help=""" The `data_parallel_replicate_degree` argument specifies the degree of data parallelism for weight replication. When this value is greater than 1, weights will be replicated across `data_parallel_replicate_degree` ranks. If `data_parallel_shard_degree` is also greater than 1, the parallelism method used is HSDP (Hybrid Sharded Data Parallelism). Otherwise, the parallelism method used is DDP (Distributed Data Parallelism). 1 means disabled.""", ) self.parser.add_argument( "--parallelism.enable_compiled_autograd", action="store_true", help="Enable CompiledAutograd to compile the backward.", ) self.parser.add_argument( "--parallelism.data_parallel_shard_degree", type=int, default=-1, help=""" The `data_parallel_shard_degree` argument specifies the degree of data parallelism for weight sharding. When this value is greater than 1, weights will be sharded across `data_parallel_shard_degree` ranks. If `data_parallel_replicate_degree` is also greater than 1, the parallelism method used is HSDP (Hybrid Sharded Data Parallelism). Otherwise, the parallelism method used is FSDP (Fully Sharded Data Parallelism). -1 means leftover ranks will be used (After DP_REPLICATE/SP/PP). Note that only `data_parallel_shard_degree` can be negative. 1 means disabled.""", ) self.parser.add_argument( "--parallelism.fsdp_reshard_after_forward", type=str, default="default", choices=["default", "always", "never"], help=""" `reshard_after_forward` specifies the policy for applying `reshard_after_forward` within an FSDP setup. `reshard_after_forward` controls parameter behavior after forward, trading off memory and communication. See torch's `fully_shard` API for more documentation on `reshard_after_forward`. The supported policies include "default", "always" and "never": - "default" applies default resharding behavior, implementing "smart defaults" for known optimal scenarios. - "always" will enable `reshard_after_forward` for all forward passes. - "never" will disable `reshard_after_forward` for all forward passes. """, ) self.parser.add_argument( "--parallelism.tensor_parallel_degree", type=int, default=1, help="Tensor Parallelism degree. 1 means disabled.", ) self.parser.add_argument( "--parallelism.disable_loss_parallel", action="store_true", help="Whether to apply loss parallel when sequence parallel is enabled", ) self.parser.add_argument( "--parallelism.enable_async_tensor_parallel", action="store_true", help="Whether to apply async tensor parallel (currently only effective when compile is enabled)", ) self.parser.add_argument( "--parallelism.pipeline_parallel_degree", type=int, default=1, help=""" Pipeline Parallelism degree, or number of ranks. 1 means disabled. If using looped schedules, this still specifies the number of physical ranks, not the number of stages. Stages per rank are inferred from split points degree, and schedule.""", ) self.parser.add_argument( "--parallelism.pipeline_parallel_split_points", type=string_list, nargs="+", default=[], help=""" Specify comma-separated names of modules to use as the beginning of a split point. e.g. "layers.0,layers.2" will cause the model to be split into 3 stages, the first containing all the layers up to layers.0, the second containing layers.0 and up to layers.2, the third containing layers.2 and all the remaining layers. Note: fully-automated splitting may be enabled in the future, but currently the split points must be specified manually.""", ) self.parser.add_argument( "--parallelism.pipeline_parallel_layers_per_stage", type=int, default=None, help=""" The number of layers per stage. If specified, the split points will be calculated from the number of layers and pipeline_parallel_degree. If not specified, the layers per stage will be inferred from the model, schedule, and pipeline_parallel_degree.""", ) self.parser.add_argument( "--parallelism.pipeline_parallel_schedule", type=str, default="1F1B", help=""" Specify the Pipeline Parallel schedule to use. The supported schedules are: https://github.com/pytorch/pytorch/blob/de4c2a3b4e89d96334dc678d1c3f2ae51a6630a0/torch/distributed/pipelining/schedules.py#L2161. The schedule must be compatible with the split points and stages_per_rank. Looped schedules (e.g. Interleaved1F1B) require specifying pipeline_parallel_degree = number of ranks, and split_points = number of stages - 1 """, ) self.parser.add_argument( "--parallelism.pipeline_parallel_schedule_csv", type=str, default="", help=""" Specify the path to the pipeline parallel schedule csv file to use. The pipeline_parallel_schedule argument must be either PipelineScheduleSingle, PipelineScheduleMulti, or _PipelineScheduleRuntime. """, ) self.parser.add_argument( "--parallelism.pipeline_parallel_microbatch_size", type=int, default=1, help=""" The size of each pipeline parallel microbatch (default 1). This value is used to compute the total number of microbatches by dividing batch_size with pipeline_parallel_microbatch_size. The global training batch size must be evenly divisible by pipeline_parallel_microbatch_size. """, ) self.parser.add_argument( "--parallelism.context_parallel_degree", type=int, default=1, help="Context parallelism degree. 1 means disabled.", ) self.parser.add_argument( "--parallelism.context_parallel_rotate_method", type=str, default="allgather", help=""" The collective to use in context parallel SDPA for kv shards exchange. 'allgather' means to all-gather all kv shards on ranks after the first sub-SDPA computation, 'alltoall' means to all-to-all shuffle the kv shards. The default value is 'allgather'. """, ) # checkpointing configs self.parser.add_argument( "--checkpoint.enable_checkpoint", action="store_true", help="Whether to enable checkpoint", ) self.parser.add_argument( "--checkpoint.folder", type=str, default="checkpoint", help=""" The folder to store the checkpoints. When enable_checkpoint is set to true, checkpoints will be in {--job.dump_folder}/{--checkpoint.folder}. """, ) self.parser.add_argument( "--checkpoint.interval", type=int, default=500, help="Checkpointing interval in steps.", ) self.parser.add_argument( "--checkpoint.model_weights_only", action="store_true", help=""" When model_weights_only=True, only model weights will be saved at the end of training. With this, checkpoints can be loaded using `torch.load(..., weights_only=True)` after conversion. When model_weights_only=False, the full checkpoint will be saved. A full checkpoint includes model, optimizer and train_state, which can be used to resume training. The default value is false. """, ) self.parser.add_argument( "--checkpoint.export_dtype", type=str, default="float32", choices=["float16", "bfloat16", "float32"], help=""" Converts to the specified precision when training completes and model_weights_only=true. Currently supports float32, float16, and bfloat16. The default value is float32. """, ) self.parser.add_argument( "--checkpoint.create_seed_checkpoint", action="store_true", help=""" Initializes the full model without applying parallelisms, and then saves it as a seed checkpoint. Note: requires user to call train.py without specifying any parallelisms, e.g. NGPU=1. Could be implemented as a separate script, but this way shares more code. """, ) self.parser.add_argument( "--checkpoint.async_mode", type=str, default="disabled", help=""" Which async checkpoint mode to use. Currently there are 3 different modes. 1. "disabled": synchronized checkpointing will be used. 2. "async": torch.distributed.checkpoint.async_save will be used. 3. "async_with_pinned_mem": this option utilizes a dedicated pinned memory space and creates a separate process for faster GPU->CPU transfer performance and eliminating GIL contention. The cost is increased CPU memory usage. If insufficient CPU memory is available, performance may degrade due to memory paging. For most users, "async" should suffice as the performance overhead is typically small (on the order of tens of seconds) compared to checkpointing frequency. This mode can be employed to pursue near-zero checkpointing times (e.g., < 1 second) given appropriate hardware support such as ample CPU memory and fast PCIe. "disabled" is the default mode. """, ) self.parser.add_argument( "--checkpoint.keep_latest_k", type=int, default=10, help=""" Keeps only the latest k checkpoints, and purging older ones. If 0, keep all checkpoints. K cannot be 1 as the last one may be in the process of being saved. As a result, the metadata of the last one may not be ready yet. The default value is 10 to avoid filling up the disk. """, ) self.parser.add_argument( "--checkpoint.load_step", type=int, default=-1, help="Load the checkpoint at the specified step. If -1, load the latest checkpoint.", ) self.parser.add_argument( "--checkpoint.exclude_from_loading", type=string_list, nargs="*", default=[], help=""" Exclude specific keys from being loaded from the checkpoint. Provide a comma-separated list of keys to exclude, e.g. 'optimizer,lr_scheduler,dataloader'. This will load the model only, excluding the specified keys. """, ) # activation checkpointing configs self.parser.add_argument( "--activation_checkpoint.mode", type=str, default="selective", help="Type of activation checkpointing to use ['none', 'full', 'selective']", ) self.parser.add_argument( "--activation_checkpoint.selective_ac_option", type=str, default="2", # 2 = checkpoint every other layer help=""" Selective activation checkpointing options ['int', 'op']. 'int' (e.g., 2) for every nth layer, or 'op' for op level ac. """, ) # float8 configs self.parser.add_argument( "--float8.enable_fsdp_float8_all_gather", action="store_true", help="Whether enable float8 all-gather in FSDP, recommended for tensorwise scaling", ) self.parser.add_argument( "--float8.precompute_float8_dynamic_scale_for_fsdp", action="store_true", help="Whether precompute float8 scales dynamically for FSDP, recommended for tensorwise scaling", ) self.parser.add_argument( "--float8.force_recompute_fp8_weight_in_bwd", action="store_true", help=""" Whether to force the recomputation of FP8 weights during backward pass. When using FSDP with tensorwise scaling, it is recommended to enable `force_recompute_fp8_weight_in_bwd` to prevent saving unsharded FP8 weights for backward computation. """, ) self.parser.add_argument( "--float8.recipe_name", type=str, default=None, choices=["tensorwise", "rowwise", "rowwise_with_gw_hp"], help=""" If specified, creates float8 config from recipe name, valid choices are `tensorwise`, `rowwise` and `rowwise_with_gw_hp`. """, ) self.parser.add_argument( "--float8.filter_fqns", type=string_list, default=[], nargs="+", help=""" Comma-separated list of fully qualified names of modules to skip applying float8 training to. nn.Linear modules with any dim size not divisible by 16 are always skipped due to hardware requirements. Example: --float8.module_filter_fqns "attention.wq,attention.wk,attention.wv,output" """, ) # communications library settings self.parser.add_argument( "--comm.init_timeout_seconds", type=int, default=300, help="Timeout for communication operations, during initialization and first train step.", ) self.parser.add_argument( "--comm.train_timeout_seconds", type=int, default=100, help=( "Timeout for communication operations after the first train step -- " "usually a tighter bound than during initialization." ), ) self.parser.add_argument( "--comm.trace_buf_size", type=int, default=20000, help="Flight recorder ring buffer size, >0 means recording by default, 0 means disabled", ) # memory estimation configs self.parser.add_argument( "--memory_estimation.enabled", help="Whether to estimate memory usage for FSDP", action="store_true", ) self.parser.add_argument( "--memory_estimation.disable_fake_mode", help="Whether to estimate memory under FakeTensorMode", action="store_true", ) self.parser.add_argument( "--fault_tolerance.enable", action="store_true", help=""" Enable TorchFT integration. When TorchFT is enabled, HSDP will be used. And --fault_tolerance.data_parallel_replicate_degree should be 1 and --fault_tolerance.group_size will be used to control the maximum replicate group size as the replicate group size is dynamic. Note that this is still an experimental feature. """, ) # torchft configs self.parser.add_argument( "--fault_tolerance.replica_id", type=int, default=0, help="The TorchFT replica ID of this run.", ) self.parser.add_argument( "--fault_tolerance.group_size", type=int, default=0, help=""" The number of TorchFT replicate groups. This number will be used for dataloader to split the dataset across the replicate groups and FSDP dimension """, ) self.parser.add_argument( "--fault_tolerance.min_replica_size", type=int, default=1, help="The minimum number of FT replica for each step.", ) self.parser.add_argument( "--experimental.custom_import", type=str, default="", help=""" This option enables the importation of external modules. Currently, it only supports dotted import modules (e.g., some_package.model_x). It is the user's responsibility to ensure that the specified path can be successfully imported. One method to achieve this, you can place your module inside the ``torchtitan/torchtitan`` folder and execute ``pip install -e .`` to make it available for import. """, ) self.parser.add_argument( "--experimental.custom_args_module", type=str, default="", help=""" This option allows users to extend TorchTitan's existing JobConfig by importing a customized module. Similar to ``--experimental.custom_model_path``, the user needs to ensure that the path can be imported. The module should contain exactly one public function and the function has the signature ``def func(parser: argparse.ArgumentParser) -> None:``. The user can use the given parser to add new argument by calling``parser.add_argument``, as wish. """, ) self._is_parsed = False self._allow_unkown_args = False def maybe_add_custom_args(self) -> None: """Add custom arguments to the parser if --experimental.custom_args_module is set. Note: This function should be called before the parser is used to parse arguments. """ if self._is_parsed: raise RuntimeError( "JobConfig has already been parsed. We could not add new arguments." ) self._allow_unkown_args = True self.parse_args(sys.argv[1:]) self._allow_unkown_args = False if self.experimental.custom_args_module: module = importlib.import_module(self.experimental.custom_args_module) public_functions = [ name for name, func in inspect.getmembers(module) if inspect.isfunction(func) and not name.startswith("_") ] func = getattr(module, public_functions[0]) func(self.parser) def to_dict(self): return self.args_dict def parse_args(self, args_list: list = sys.argv[1:]): self._is_parsed = True args, cmd_args = self.parse_args_from_command_line(args_list) config_file = getattr(args, "job.config_file", None) # build up a two level dict args_dict = self._args_to_two_level_dict(args) if config_file is not None: try: with open(config_file, "rb") as f: for k, v in tomllib.load(f).items(): # to prevent overwrite of non-specified keys args_dict[k] |= v except (FileNotFoundError, tomllib.TOMLDecodeError) as e: logger.exception( f"Error while loading the configuration file: {config_file}" ) logger.exception(f"Error details: {str(e)}") raise e # Checking string-list arguments are properly split into a list # if split-points came from 'args' (from cmd line) it would have already been parsed into a list by that parser string_list_argnames = self._get_string_list_argument_names() for n in string_list_argnames: check_string_list_argument(args_dict, n) # override args dict with cmd_args cmd_args_dict = self._args_to_two_level_dict(cmd_args) for section, section_args in cmd_args_dict.items(): for k, v in section_args.items(): args_dict[section][k] = v self.args_dict = args_dict for k, v in args_dict.items(): class_type = type(k.title(), (), v) setattr(self, k, class_type()) self._validate_config() def _args_to_two_level_dict(self, args: argparse.Namespace) -> defaultdict: args_dict = defaultdict(defaultdict) for k, v in vars(args).items(): first_level_key, second_level_key = k.split(".", 1) args_dict[first_level_key][second_level_key] = v return args_dict def _validate_config(self) -> None: # TODO: temporary mitigation of BC breaking change in # tokenizer default path, need to remove later if not os.path.exists(self.model.tokenizer_path): logger.warning( f"Tokenizer path {self.model.tokenizer_path} does not exist!" ) old_tokenizer_path = ( "torchtitan/datasets/tokenizer/original/tokenizer.model" ) if os.path.exists(old_tokenizer_path): self.model.tokenizer_path = old_tokenizer_path logger.warning( f"Temporarily switching to previous default tokenizer path {old_tokenizer_path}. " "Please update your config." ) def _get_string_list_argument_names(self) -> list[str]: """Get the parser argument names of type `string_list`.""" string_list_args = [ v.dest for v in self.parser._actions if v.type is string_list ] return string_list_args def parse_args_from_command_line( self, args_list ) -> Tuple[argparse.Namespace, argparse.Namespace]: """ Parse command line arguments and return the parsed args and the command line only args """ if self._allow_unkown_args: args, _ = self.parser.parse_known_args(args_list) else: args = self.parser.parse_args(args_list) string_list_argnames = set(self._get_string_list_argument_names()) # aux parser to parse the command line only args, with no defaults from main parser aux_parser = argparse.ArgumentParser(argument_default=argparse.SUPPRESS) for arg, val in vars(args).items(): if isinstance(val, bool): aux_parser.add_argument( "--" + arg, action="store_true" if val else "store_false" ) elif arg in string_list_argnames: # without this special case, type inference breaks here, # since the inferred type is just 'list' and it ends up flattening # e.g. from ["layers.0", "layers.1"] into ["l", "a", "y", "e", "r", "s", ".0", ...] aux_parser.add_argument("--" + arg, type=string_list) else: aux_parser.add_argument("--" + arg, type=type(val)) cmd_args, _ = aux_parser.parse_known_args(args_list) return args, cmd_args