File size: 18,730 Bytes
8fbfec1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import importlib
import os
import time
from datetime import timedelta
from typing import Any, Generator, Iterable, Optional

import torch
from torch.distributed.elastic.multiprocessing.errors import record

import torchtitan.components.ft as ft
import torchtitan.protocols.train_spec as train_spec_module

from torchtitan.components.checkpoint import CheckpointManager
from torchtitan.components.metrics import (
    build_metrics_processor,
    ensure_pp_loss_visible,
)
from torchtitan.config_manager import JobConfig
from torchtitan.distributed import ParallelDims, utils as dist_utils
from torchtitan.protocols.model_converter import build_model_converters
from torchtitan.tools import utils
from torchtitan.tools.logging import init_logger, logger
from torchtitan.tools.profiling import (
    maybe_enable_memory_snapshot,
    maybe_enable_profiling,
)


class Trainer(torch.distributed.checkpoint.stateful.Stateful):
    job_config: JobConfig
    gc_handler: utils.GarbageCollection

    parallel_dims: ParallelDims
    train_spec: train_spec_module.TrainSpec
    world_mesh: torch.distributed.DeviceMesh

    dataloader: train_spec_module.BaseDataLoader
    metrics_processor: train_spec_module.MetricsProcessor
    checkpointer: CheckpointManager
    train_context: Generator[None, None, None]

    model_parts: list[torch.nn.Module]
    loss_fn: train_spec_module.LossFunction
    optimizers: train_spec_module.OptimizersContainer
    lr_schedulers: train_spec_module.LRSchedulersContainer

    pp_has_first_stage: bool
    pp_has_last_stage: bool

    device: torch.device

    # states
    step: int

    # Enable debug tracing on failure: https://pytorch.org/docs/stable/elastic/errors.html
    @record
    def __init__(self, job_config: JobConfig):
        self.job_config = job_config

        logger.info(f"Starting job: {job_config.job.description}")

        if job_config.experimental.custom_import:
            importlib.import_module(job_config.experimental.custom_import)

        if job_config.job.print_args:
            logger.info(f"Running with args: {job_config.to_dict()}")

        # take control of garbage collection to avoid stragglers
        self.gc_handler = utils.GarbageCollection(gc_freq=job_config.training.gc_freq)

        device_module, device_type = utils.device_module, utils.device_type
        self.device = torch.device(f"{device_type}:{int(os.environ['LOCAL_RANK'])}")
        # Device has to be set before creating TorchFT manager.
        device_module.set_device(self.device)
        ft_manager = ft.init_ft_manager(job_config)

        # init distributed
        world_size = int(os.environ["WORLD_SIZE"])
        parallelism_config = job_config.parallelism
        if not ft_manager.enabled:
            self.parallel_dims = parallel_dims = ParallelDims(
                dp_shard=parallelism_config.data_parallel_shard_degree,
                dp_replicate=parallelism_config.data_parallel_replicate_degree,
                cp=parallelism_config.context_parallel_degree,
                tp=parallelism_config.tensor_parallel_degree,
                pp=parallelism_config.pipeline_parallel_degree,
                world_size=world_size,
                enable_loss_parallel=not parallelism_config.disable_loss_parallel,
            )
        else:
            self.parallel_dims = parallel_dims = ft.FTParallelDims(
                dp_shard=parallelism_config.data_parallel_shard_degree,
                dp_replicate=parallelism_config.data_parallel_replicate_degree,
                cp=parallelism_config.context_parallel_degree,
                tp=parallelism_config.tensor_parallel_degree,
                pp=parallelism_config.pipeline_parallel_degree,
                world_size=world_size,
                enable_loss_parallel=not parallelism_config.disable_loss_parallel,
                ft_manager=ft_manager,
            )
        dist_utils.init_distributed(job_config)

        # build meshes
        self.world_mesh = world_mesh = parallel_dims.build_mesh(device_type=device_type)
        if parallel_dims.dp_enabled:
            dp_mesh = world_mesh["dp"]
            dp_degree, dp_rank = dp_mesh.size(), dp_mesh.get_local_rank()
        else:
            dp_degree, dp_rank = 1, 0

        # Set random seed, and maybe enable deterministic mode
        # (mainly for debugging, expect perf loss).
        dist_utils.set_determinism(
            world_mesh,
            self.device,
            job_config.training.seed,
            job_config.training.deterministic,
        )
        self.train_spec = train_spec_module.get_train_spec(job_config.model.name)

        # build dataloader
        tokenizer = (
            self.train_spec.build_tokenizer_fn(job_config)
            if self.train_spec.build_tokenizer_fn is not None
            else None
        )

        # If TorchFT is enabled, the dp_rank and dp_degree, which are used for
        # dataloader must be changed.
        if ft_manager.enabled:
            dp_degree, dp_rank = ft_manager.get_dp_info(dp_degree, dp_rank)

        self.dataloader = self.train_spec.build_dataloader_fn(
            dp_world_size=dp_degree,
            dp_rank=dp_rank,
            tokenizer=tokenizer,
            job_config=job_config,
        )

        # build model (using meta init)
        model_cls = self.train_spec.cls
        model_args = self.train_spec.config[job_config.model.flavor]
        # set the model args from training job configs
        model_args.update_from_config(job_config, tokenizer)

        logger.info(
            f"Building {self.train_spec.name} {job_config.model.flavor} with {model_args}"
        )
        with torch.device("meta"):
            model = model_cls.from_model_args(model_args)

        # Build the collection of model converters. No-op if `model.converters` empty
        model_converters = build_model_converters(job_config, parallel_dims)
        model_converters.convert(model)

        # metrics logging
        build_metrics_processor_fn = (
            build_metrics_processor
            if self.train_spec.build_metrics_processor_fn is None
            else self.train_spec.build_metrics_processor_fn
        )
        self.metrics_processor = build_metrics_processor_fn(job_config, parallel_dims)
        color = self.metrics_processor.color

        # calculate model size and flops per token
        (
            model_param_count,
            self.metrics_processor.num_flops_per_token,
        ) = model_args.get_nparams_and_flops(model, job_config.training.seq_len)

        logger.info(
            f"{color.blue}Model {self.train_spec.name} {job_config.model.flavor} "
            f"{color.red}size: {model_param_count:,} total parameters{color.reset}"
        )

        # move sharded model to CPU/GPU and initialize weights via DTensor
        if job_config.checkpoint.create_seed_checkpoint:
            init_device = "cpu"
            buffer_device = None
        elif job_config.training.enable_cpu_offload:
            init_device = "cpu"
            buffer_device = device_type
        else:
            init_device = device_type
            buffer_device = None

        self.loss_fn = self.train_spec.build_loss_fn(job_config)

        # apply parallelisms and initialization
        if parallel_dims.pp_enabled:
            if not self.train_spec.pipelining_fn:
                raise RuntimeError(
                    f"Pipeline Parallel is enabled but {self.train_spec.name} "
                    f"does not support pipelining"
                )

            # apply both PT-D Pipeline Parallel and SPMD-style PT-D techniques
            (
                self.pp_schedule,
                self.model_parts,
                self.pp_has_first_stage,
                self.pp_has_last_stage,
            ) = self.train_spec.pipelining_fn(
                model,
                world_mesh,
                parallel_dims,
                job_config,
                self.device,
                model_args,
                self.train_spec.parallelize_fn,
                self.loss_fn,
            )
            # when PP is enabled, `model` obj is no longer used after this point,
            # model_parts is used instead
            del model

            for m in self.model_parts:
                m.to_empty(device=init_device)
                with torch.no_grad():
                    m.init_weights(buffer_device=buffer_device)
                m.train()

            # confirm that user will be able to view loss metrics on the console
            ensure_pp_loss_visible(parallel_dims, job_config, color)
        else:
            # apply PT-D Tensor Parallel, activation checkpointing, torch.compile, Data Parallel
            model = self.train_spec.parallelize_fn(
                model, world_mesh, parallel_dims, job_config
            )

            model.to_empty(device=init_device)
            with torch.no_grad():
                model.init_weights(buffer_device=buffer_device)
            model.train()

            self.model_parts = [model]

        # initialize device memory monitor and get peak flops for MFU calculation
        device_memory_monitor = self.metrics_processor.device_memory_monitor
        gpu_peak_flops = utils.get_peak_flops(device_memory_monitor.device_name)
        logger.info(f"Peak FLOPS used for computing MFU: {gpu_peak_flops:.3e}")
        device_mem_stats = device_memory_monitor.get_peak_stats()
        logger.info(
            f"{device_type.upper()} memory usage for model: "
            f"{device_mem_stats.max_reserved_gib:.2f}GiB"
            f"({device_mem_stats.max_reserved_pct:.2f}%)"
        )

        # build optimizer after applying parallelisms to the model
        self.optimizers = self.train_spec.build_optimizers_fn(
            self.model_parts, job_config, ft_manager
        )
        self.lr_schedulers = self.train_spec.build_lr_schedulers_fn(
            self.optimizers, job_config
        )
        # Post optimizer step model converters hook.
        # e.g. calculate float8 dynamic amax/scale for all-parameter for FSDP2
        # where it issues a single all-reduce for all parameters at once for better performance
        self.optimizers.register_step_post_hook(
            lambda *args, **kwargs: model_converters.post_optimizer_hook(
                self.model_parts
            )
        )
        self.metrics_processor.optimizers = self.optimizers

        # Initialize trainer states that will be saved in checkpoint.
        # These attributes must be initialized before checkpoint loading.
        self.step = 0

        self.checkpointer = CheckpointManager(
            dataloader=self.dataloader,
            model_parts=self.model_parts,
            optimizers=self.optimizers,
            lr_schedulers=self.lr_schedulers,
            states={"train_state": self},
            job_config=job_config,
            ft_manager=ft_manager,
        )

        self.train_context = dist_utils.get_train_context(
            parallel_dims.loss_parallel_enabled,
            parallelism_config.enable_compiled_autograd,
        )

        logger.info(
            "Trainer is initialized with "
            f"local batch size {job_config.training.batch_size}, "
            f"global batch size {job_config.training.batch_size * dp_degree}, "
            f"sequence length {job_config.training.seq_len}, "
            f"total steps {job_config.training.steps} "
            f"(warmup {job_config.lr_scheduler.warmup_steps})."
        )

    def next_batch(
        self, data_iterator: Iterable
    ) -> tuple[dict[str, torch.Tensor], torch.Tensor]:
        data_load_start = time.perf_counter()
        batch = next(data_iterator)
        input_dict, labels = batch
        self.metrics_processor.ntokens_since_last_log += labels.numel()
        self.metrics_processor.data_loading_times.append(
            time.perf_counter() - data_load_start
        )

        device_type = utils.device_type
        for k, _ in input_dict.items():
            input_dict[k] = input_dict[k].to(device_type)
        labels = labels.to(device_type)
        return input_dict, labels

    def train_step(self, input_dict: dict[str, torch.Tensor], labels: torch.Tensor):
        self.optimizers.zero_grad()

        # Keep these variables local to shorten the code as these are
        # the major variables that are used in the training loop.
        model_parts = self.model_parts
        world_mesh = self.world_mesh
        parallel_dims = self.parallel_dims

        # apply context parallelism if cp is enabled
        # ensure CP handles the separate freqs_cis buffer for each pp stage
        inputs = input_dict["input"]
        optional_context_parallel_ctx = (
            dist_utils.create_context_parallel_ctx(
                cp_mesh=world_mesh["cp"],
                cp_buffers=[inputs, labels] + [m.freqs_cis for m in model_parts],
                cp_seq_dims=[1, 1] + [0 for _ in model_parts],
                cp_no_restore_buffers={inputs, labels},
                cp_rotate_method=self.job_config.parallelism.context_parallel_rotate_method,
            )
            if parallel_dims.cp_enabled
            else None
        )

        if parallel_dims.pp_enabled:
            # Pipeline Parallel forward / backward inside step() call
            with self.train_context(optional_context_parallel_ctx):
                targets, losses = (
                    (labels, []) if self.pp_has_last_stage else (None, None)
                )
                if self.pp_has_first_stage:
                    self.pp_schedule.step(inputs, target=targets, losses=losses)
                else:
                    self.pp_schedule.step(target=targets, losses=losses)

            # accumulate losses across pipeline microbatches
            # TODO: PP+FSDP unexpectedly puts the loss back to the CPU
            loss = (
                torch.mean(torch.stack(losses)).to(self.device)
                if self.pp_has_last_stage
                else torch.tensor([-1.0], device=self.device)
            )
        else:
            # Non-PP forward / backward
            with self.train_context(optional_context_parallel_ctx):
                assert len(model_parts) == 1
                pred = model_parts[0](inputs)
                loss = self.loss_fn(pred, labels)
                # pred.shape=(bs, seq_len, vocab_size)
                # need to free to before bwd to avoid peaking memory
                del pred
                loss.backward()

        dist_utils.clip_grad_norm_(
            [p for m in model_parts for p in m.parameters()],
            self.job_config.training.max_norm,
            foreach=True,
            pp_mesh=self.world_mesh["pp"] if parallel_dims.pp_enabled else None,
        )
        self.checkpointer.maybe_wait_for_staging()
        self.optimizers.step()
        self.lr_schedulers.step()

        # log metrics
        if not self.metrics_processor.should_log(self.step):
            return

        if (
            parallel_dims.dp_replicate_enabled
            or parallel_dims.dp_shard_enabled
            or parallel_dims.cp_enabled
        ):
            loss = loss.detach()
            global_avg_loss, global_max_loss = (
                dist_utils.dist_mean(loss, world_mesh["dp_cp"]),
                dist_utils.dist_max(loss, world_mesh["dp_cp"]),
            )
        else:
            global_avg_loss = global_max_loss = loss.item()

        self.metrics_processor.log(self.step, global_avg_loss, global_max_loss)

    @record
    def train(self):
        job_config = self.job_config

        self.checkpointer.load(step=job_config.checkpoint.load_step)
        logger.info(f"Training starts at step {self.step + 1}.")

        with maybe_enable_profiling(
            job_config, global_step=self.step
        ) as torch_profiler, maybe_enable_memory_snapshot(
            job_config, global_step=self.step
        ) as memory_profiler:
            data_iterator = iter(self.dataloader)
            while self.step < job_config.training.steps:
                self.step += 1
                self.gc_handler.run(self.step)
                inputs, labels = self.next_batch(data_iterator)
                self.train_step(inputs, labels)
                self.checkpointer.save(
                    self.step, force=(self.step == job_config.training.steps)
                )

                # signal the profiler that the next profiling step has started
                if torch_profiler:
                    torch_profiler.step()
                if memory_profiler:
                    memory_profiler.step()

                # reduce timeout after first train step for faster signal
                # (assuming lazy init and compilation are finished)
                if self.step == 1:
                    dist_utils.set_pg_timeouts(
                        timeout=timedelta(
                            seconds=job_config.comm.train_timeout_seconds
                        ),
                        world_mesh=self.world_mesh,
                    )

        if torch.distributed.get_rank() == 0:
            logger.info("Sleeping 2 seconds for other ranks to complete")
            time.sleep(2)

        self.metrics_processor.close()
        logger.info("Training completed")

    def state_dict(self) -> dict[str, Any]:
        return {"step": self.step}

    def load_state_dict(self, state_dict: dict[str, Any]):
        self.step = state_dict["step"]

    def close(self) -> None:
        if self.checkpointer:
            self.checkpointer.close()


if __name__ == "__main__":
    init_logger()
    config = JobConfig()
    config.maybe_add_custom_args()
    config.parse_args()
    trainer: Optional[Trainer] = None

    try:
        trainer = Trainer(config)

        if config.checkpoint.create_seed_checkpoint:
            assert int(
                os.environ["WORLD_SIZE"]
            ), "Must create seed checkpoint using a single device, to disable sharding."
            assert (
                config.checkpoint.enable_checkpoint
            ), "Must enable checkpointing when creating a seed checkpoint."
            trainer.checkpointer.save(curr_step=0, force=True)
            logger.info("Created seed checkpoint")
        else:
            trainer.train()
    finally:
        if trainer:
            trainer.close()

        if torch.distributed.is_initialized():
            torch.distributed.destroy_process_group()
            logger.info("Process group destroyed.")