File size: 18,730 Bytes
8fbfec1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import importlib
import os
import time
from datetime import timedelta
from typing import Any, Generator, Iterable, Optional
import torch
from torch.distributed.elastic.multiprocessing.errors import record
import torchtitan.components.ft as ft
import torchtitan.protocols.train_spec as train_spec_module
from torchtitan.components.checkpoint import CheckpointManager
from torchtitan.components.metrics import (
build_metrics_processor,
ensure_pp_loss_visible,
)
from torchtitan.config_manager import JobConfig
from torchtitan.distributed import ParallelDims, utils as dist_utils
from torchtitan.protocols.model_converter import build_model_converters
from torchtitan.tools import utils
from torchtitan.tools.logging import init_logger, logger
from torchtitan.tools.profiling import (
maybe_enable_memory_snapshot,
maybe_enable_profiling,
)
class Trainer(torch.distributed.checkpoint.stateful.Stateful):
job_config: JobConfig
gc_handler: utils.GarbageCollection
parallel_dims: ParallelDims
train_spec: train_spec_module.TrainSpec
world_mesh: torch.distributed.DeviceMesh
dataloader: train_spec_module.BaseDataLoader
metrics_processor: train_spec_module.MetricsProcessor
checkpointer: CheckpointManager
train_context: Generator[None, None, None]
model_parts: list[torch.nn.Module]
loss_fn: train_spec_module.LossFunction
optimizers: train_spec_module.OptimizersContainer
lr_schedulers: train_spec_module.LRSchedulersContainer
pp_has_first_stage: bool
pp_has_last_stage: bool
device: torch.device
# states
step: int
# Enable debug tracing on failure: https://pytorch.org/docs/stable/elastic/errors.html
@record
def __init__(self, job_config: JobConfig):
self.job_config = job_config
logger.info(f"Starting job: {job_config.job.description}")
if job_config.experimental.custom_import:
importlib.import_module(job_config.experimental.custom_import)
if job_config.job.print_args:
logger.info(f"Running with args: {job_config.to_dict()}")
# take control of garbage collection to avoid stragglers
self.gc_handler = utils.GarbageCollection(gc_freq=job_config.training.gc_freq)
device_module, device_type = utils.device_module, utils.device_type
self.device = torch.device(f"{device_type}:{int(os.environ['LOCAL_RANK'])}")
# Device has to be set before creating TorchFT manager.
device_module.set_device(self.device)
ft_manager = ft.init_ft_manager(job_config)
# init distributed
world_size = int(os.environ["WORLD_SIZE"])
parallelism_config = job_config.parallelism
if not ft_manager.enabled:
self.parallel_dims = parallel_dims = ParallelDims(
dp_shard=parallelism_config.data_parallel_shard_degree,
dp_replicate=parallelism_config.data_parallel_replicate_degree,
cp=parallelism_config.context_parallel_degree,
tp=parallelism_config.tensor_parallel_degree,
pp=parallelism_config.pipeline_parallel_degree,
world_size=world_size,
enable_loss_parallel=not parallelism_config.disable_loss_parallel,
)
else:
self.parallel_dims = parallel_dims = ft.FTParallelDims(
dp_shard=parallelism_config.data_parallel_shard_degree,
dp_replicate=parallelism_config.data_parallel_replicate_degree,
cp=parallelism_config.context_parallel_degree,
tp=parallelism_config.tensor_parallel_degree,
pp=parallelism_config.pipeline_parallel_degree,
world_size=world_size,
enable_loss_parallel=not parallelism_config.disable_loss_parallel,
ft_manager=ft_manager,
)
dist_utils.init_distributed(job_config)
# build meshes
self.world_mesh = world_mesh = parallel_dims.build_mesh(device_type=device_type)
if parallel_dims.dp_enabled:
dp_mesh = world_mesh["dp"]
dp_degree, dp_rank = dp_mesh.size(), dp_mesh.get_local_rank()
else:
dp_degree, dp_rank = 1, 0
# Set random seed, and maybe enable deterministic mode
# (mainly for debugging, expect perf loss).
dist_utils.set_determinism(
world_mesh,
self.device,
job_config.training.seed,
job_config.training.deterministic,
)
self.train_spec = train_spec_module.get_train_spec(job_config.model.name)
# build dataloader
tokenizer = (
self.train_spec.build_tokenizer_fn(job_config)
if self.train_spec.build_tokenizer_fn is not None
else None
)
# If TorchFT is enabled, the dp_rank and dp_degree, which are used for
# dataloader must be changed.
if ft_manager.enabled:
dp_degree, dp_rank = ft_manager.get_dp_info(dp_degree, dp_rank)
self.dataloader = self.train_spec.build_dataloader_fn(
dp_world_size=dp_degree,
dp_rank=dp_rank,
tokenizer=tokenizer,
job_config=job_config,
)
# build model (using meta init)
model_cls = self.train_spec.cls
model_args = self.train_spec.config[job_config.model.flavor]
# set the model args from training job configs
model_args.update_from_config(job_config, tokenizer)
logger.info(
f"Building {self.train_spec.name} {job_config.model.flavor} with {model_args}"
)
with torch.device("meta"):
model = model_cls.from_model_args(model_args)
# Build the collection of model converters. No-op if `model.converters` empty
model_converters = build_model_converters(job_config, parallel_dims)
model_converters.convert(model)
# metrics logging
build_metrics_processor_fn = (
build_metrics_processor
if self.train_spec.build_metrics_processor_fn is None
else self.train_spec.build_metrics_processor_fn
)
self.metrics_processor = build_metrics_processor_fn(job_config, parallel_dims)
color = self.metrics_processor.color
# calculate model size and flops per token
(
model_param_count,
self.metrics_processor.num_flops_per_token,
) = model_args.get_nparams_and_flops(model, job_config.training.seq_len)
logger.info(
f"{color.blue}Model {self.train_spec.name} {job_config.model.flavor} "
f"{color.red}size: {model_param_count:,} total parameters{color.reset}"
)
# move sharded model to CPU/GPU and initialize weights via DTensor
if job_config.checkpoint.create_seed_checkpoint:
init_device = "cpu"
buffer_device = None
elif job_config.training.enable_cpu_offload:
init_device = "cpu"
buffer_device = device_type
else:
init_device = device_type
buffer_device = None
self.loss_fn = self.train_spec.build_loss_fn(job_config)
# apply parallelisms and initialization
if parallel_dims.pp_enabled:
if not self.train_spec.pipelining_fn:
raise RuntimeError(
f"Pipeline Parallel is enabled but {self.train_spec.name} "
f"does not support pipelining"
)
# apply both PT-D Pipeline Parallel and SPMD-style PT-D techniques
(
self.pp_schedule,
self.model_parts,
self.pp_has_first_stage,
self.pp_has_last_stage,
) = self.train_spec.pipelining_fn(
model,
world_mesh,
parallel_dims,
job_config,
self.device,
model_args,
self.train_spec.parallelize_fn,
self.loss_fn,
)
# when PP is enabled, `model` obj is no longer used after this point,
# model_parts is used instead
del model
for m in self.model_parts:
m.to_empty(device=init_device)
with torch.no_grad():
m.init_weights(buffer_device=buffer_device)
m.train()
# confirm that user will be able to view loss metrics on the console
ensure_pp_loss_visible(parallel_dims, job_config, color)
else:
# apply PT-D Tensor Parallel, activation checkpointing, torch.compile, Data Parallel
model = self.train_spec.parallelize_fn(
model, world_mesh, parallel_dims, job_config
)
model.to_empty(device=init_device)
with torch.no_grad():
model.init_weights(buffer_device=buffer_device)
model.train()
self.model_parts = [model]
# initialize device memory monitor and get peak flops for MFU calculation
device_memory_monitor = self.metrics_processor.device_memory_monitor
gpu_peak_flops = utils.get_peak_flops(device_memory_monitor.device_name)
logger.info(f"Peak FLOPS used for computing MFU: {gpu_peak_flops:.3e}")
device_mem_stats = device_memory_monitor.get_peak_stats()
logger.info(
f"{device_type.upper()} memory usage for model: "
f"{device_mem_stats.max_reserved_gib:.2f}GiB"
f"({device_mem_stats.max_reserved_pct:.2f}%)"
)
# build optimizer after applying parallelisms to the model
self.optimizers = self.train_spec.build_optimizers_fn(
self.model_parts, job_config, ft_manager
)
self.lr_schedulers = self.train_spec.build_lr_schedulers_fn(
self.optimizers, job_config
)
# Post optimizer step model converters hook.
# e.g. calculate float8 dynamic amax/scale for all-parameter for FSDP2
# where it issues a single all-reduce for all parameters at once for better performance
self.optimizers.register_step_post_hook(
lambda *args, **kwargs: model_converters.post_optimizer_hook(
self.model_parts
)
)
self.metrics_processor.optimizers = self.optimizers
# Initialize trainer states that will be saved in checkpoint.
# These attributes must be initialized before checkpoint loading.
self.step = 0
self.checkpointer = CheckpointManager(
dataloader=self.dataloader,
model_parts=self.model_parts,
optimizers=self.optimizers,
lr_schedulers=self.lr_schedulers,
states={"train_state": self},
job_config=job_config,
ft_manager=ft_manager,
)
self.train_context = dist_utils.get_train_context(
parallel_dims.loss_parallel_enabled,
parallelism_config.enable_compiled_autograd,
)
logger.info(
"Trainer is initialized with "
f"local batch size {job_config.training.batch_size}, "
f"global batch size {job_config.training.batch_size * dp_degree}, "
f"sequence length {job_config.training.seq_len}, "
f"total steps {job_config.training.steps} "
f"(warmup {job_config.lr_scheduler.warmup_steps})."
)
def next_batch(
self, data_iterator: Iterable
) -> tuple[dict[str, torch.Tensor], torch.Tensor]:
data_load_start = time.perf_counter()
batch = next(data_iterator)
input_dict, labels = batch
self.metrics_processor.ntokens_since_last_log += labels.numel()
self.metrics_processor.data_loading_times.append(
time.perf_counter() - data_load_start
)
device_type = utils.device_type
for k, _ in input_dict.items():
input_dict[k] = input_dict[k].to(device_type)
labels = labels.to(device_type)
return input_dict, labels
def train_step(self, input_dict: dict[str, torch.Tensor], labels: torch.Tensor):
self.optimizers.zero_grad()
# Keep these variables local to shorten the code as these are
# the major variables that are used in the training loop.
model_parts = self.model_parts
world_mesh = self.world_mesh
parallel_dims = self.parallel_dims
# apply context parallelism if cp is enabled
# ensure CP handles the separate freqs_cis buffer for each pp stage
inputs = input_dict["input"]
optional_context_parallel_ctx = (
dist_utils.create_context_parallel_ctx(
cp_mesh=world_mesh["cp"],
cp_buffers=[inputs, labels] + [m.freqs_cis for m in model_parts],
cp_seq_dims=[1, 1] + [0 for _ in model_parts],
cp_no_restore_buffers={inputs, labels},
cp_rotate_method=self.job_config.parallelism.context_parallel_rotate_method,
)
if parallel_dims.cp_enabled
else None
)
if parallel_dims.pp_enabled:
# Pipeline Parallel forward / backward inside step() call
with self.train_context(optional_context_parallel_ctx):
targets, losses = (
(labels, []) if self.pp_has_last_stage else (None, None)
)
if self.pp_has_first_stage:
self.pp_schedule.step(inputs, target=targets, losses=losses)
else:
self.pp_schedule.step(target=targets, losses=losses)
# accumulate losses across pipeline microbatches
# TODO: PP+FSDP unexpectedly puts the loss back to the CPU
loss = (
torch.mean(torch.stack(losses)).to(self.device)
if self.pp_has_last_stage
else torch.tensor([-1.0], device=self.device)
)
else:
# Non-PP forward / backward
with self.train_context(optional_context_parallel_ctx):
assert len(model_parts) == 1
pred = model_parts[0](inputs)
loss = self.loss_fn(pred, labels)
# pred.shape=(bs, seq_len, vocab_size)
# need to free to before bwd to avoid peaking memory
del pred
loss.backward()
dist_utils.clip_grad_norm_(
[p for m in model_parts for p in m.parameters()],
self.job_config.training.max_norm,
foreach=True,
pp_mesh=self.world_mesh["pp"] if parallel_dims.pp_enabled else None,
)
self.checkpointer.maybe_wait_for_staging()
self.optimizers.step()
self.lr_schedulers.step()
# log metrics
if not self.metrics_processor.should_log(self.step):
return
if (
parallel_dims.dp_replicate_enabled
or parallel_dims.dp_shard_enabled
or parallel_dims.cp_enabled
):
loss = loss.detach()
global_avg_loss, global_max_loss = (
dist_utils.dist_mean(loss, world_mesh["dp_cp"]),
dist_utils.dist_max(loss, world_mesh["dp_cp"]),
)
else:
global_avg_loss = global_max_loss = loss.item()
self.metrics_processor.log(self.step, global_avg_loss, global_max_loss)
@record
def train(self):
job_config = self.job_config
self.checkpointer.load(step=job_config.checkpoint.load_step)
logger.info(f"Training starts at step {self.step + 1}.")
with maybe_enable_profiling(
job_config, global_step=self.step
) as torch_profiler, maybe_enable_memory_snapshot(
job_config, global_step=self.step
) as memory_profiler:
data_iterator = iter(self.dataloader)
while self.step < job_config.training.steps:
self.step += 1
self.gc_handler.run(self.step)
inputs, labels = self.next_batch(data_iterator)
self.train_step(inputs, labels)
self.checkpointer.save(
self.step, force=(self.step == job_config.training.steps)
)
# signal the profiler that the next profiling step has started
if torch_profiler:
torch_profiler.step()
if memory_profiler:
memory_profiler.step()
# reduce timeout after first train step for faster signal
# (assuming lazy init and compilation are finished)
if self.step == 1:
dist_utils.set_pg_timeouts(
timeout=timedelta(
seconds=job_config.comm.train_timeout_seconds
),
world_mesh=self.world_mesh,
)
if torch.distributed.get_rank() == 0:
logger.info("Sleeping 2 seconds for other ranks to complete")
time.sleep(2)
self.metrics_processor.close()
logger.info("Training completed")
def state_dict(self) -> dict[str, Any]:
return {"step": self.step}
def load_state_dict(self, state_dict: dict[str, Any]):
self.step = state_dict["step"]
def close(self) -> None:
if self.checkpointer:
self.checkpointer.close()
if __name__ == "__main__":
init_logger()
config = JobConfig()
config.maybe_add_custom_args()
config.parse_args()
trainer: Optional[Trainer] = None
try:
trainer = Trainer(config)
if config.checkpoint.create_seed_checkpoint:
assert int(
os.environ["WORLD_SIZE"]
), "Must create seed checkpoint using a single device, to disable sharding."
assert (
config.checkpoint.enable_checkpoint
), "Must enable checkpointing when creating a seed checkpoint."
trainer.checkpointer.save(curr_step=0, force=True)
logger.info("Created seed checkpoint")
else:
trainer.train()
finally:
if trainer:
trainer.close()
if torch.distributed.is_initialized():
torch.distributed.destroy_process_group()
logger.info("Process group destroyed.")
|