File size: 15,397 Bytes
4db79c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

# This file applies the PT-D parallelisms (except pipeline parallelism) and various
# training techniques (e.g. activation checkpointing and compile) to the Llama model.

from collections import defaultdict

import torch
import torch.nn as nn
from torch.distributed._composable.replicate import replicate
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
    checkpoint_wrapper as ptd_checkpoint_wrapper,
)

from torch.distributed.device_mesh import DeviceMesh
from torch.distributed.fsdp import CPUOffloadPolicy, fully_shard, MixedPrecisionPolicy
from torch.distributed.tensor import Replicate, Shard
from torch.distributed.tensor.parallel import (
    ColwiseParallel,
    parallelize_module,
    PrepareModuleInput,
    RowwiseParallel,
    SequenceParallel,
)

from torchtitan.config_manager import JobConfig, TORCH_DTYPE_MAP
from torchtitan.distributed import ParallelDims
from torchtitan.tools.logging import logger


def parallelize_llama(
    model: nn.Module,
    world_mesh: DeviceMesh,
    parallel_dims: ParallelDims,
    job_config: JobConfig,
):
    """
    Apply tensor parallelism, activation checkpointing, torch.compile, and data
    parallelism to the model.

    NOTE: The passed-in model preferably should be on meta device. Otherwise,
    the model must fit on GPU or CPU memory.
    """

    if parallel_dims.tp_enabled:
        if (
            job_config.parallelism.enable_async_tensor_parallel
            and not job_config.training.compile
        ):
            raise RuntimeError("Async TP requires --training.compile")

        enable_float8_linear = "float8" in job_config.model.converters
        float8_is_rowwise = job_config.float8.recipe_name in (
            "rowwise",
            "rowwise_with_gw_hp",
        )

        # For now, float8 all-gather with TP is only supported for tensorwise
        # float8 scaling recipes. For rowwise recipes, we use regular TP and
        # all-gather happens in high precision.
        enable_float8_tensorwise_tp = enable_float8_linear and not float8_is_rowwise

        apply_tp(
            model,
            world_mesh["tp"],
            loss_parallel=parallel_dims.loss_parallel_enabled,
            enable_float8_tensorwise_tp=enable_float8_tensorwise_tp,
            enable_async_tp=job_config.parallelism.enable_async_tensor_parallel,
        )

    if job_config.model.use_flex_attn:
        if job_config.activation_checkpoint.mode == "selective":
            raise ValueError(
                "FlexAttention is not compatible with selective AC yet. "
                "See https://github.com/pytorch/pytorch/issues/147879"
            )

        if parallel_dims.cp_enabled:
            raise ValueError(
                "FlexAttention is not compatible with CP yet. "
                "We are still working on this."
            )

    if job_config.activation_checkpoint.mode != "none":
        apply_ac(model, job_config.activation_checkpoint)

    # turn on per-TransformerBlock compile after AC wrapping and before FSDP
    if job_config.training.compile:
        apply_compile(model)

    if (
        parallel_dims.dp_shard_enabled or parallel_dims.cp_enabled
    ):  # apply FSDP or HSDP, potentially with Context Parallel
        if parallel_dims.dp_replicate_enabled:
            dp_mesh_dim_names = ("dp_replicate", "dp_shard_cp")
        else:
            dp_mesh_dim_names = ("dp_shard_cp",)

        apply_fsdp(
            model,
            world_mesh[tuple(dp_mesh_dim_names)],
            param_dtype=TORCH_DTYPE_MAP[job_config.training.mixed_precision_param],
            reduce_dtype=TORCH_DTYPE_MAP[job_config.training.mixed_precision_reduce],
            pp_enabled=parallel_dims.pp_enabled,
            cpu_offload=job_config.training.enable_cpu_offload,
            reshard_after_forward_policy=job_config.parallelism.fsdp_reshard_after_forward,
        )

        if parallel_dims.dp_replicate_enabled:
            logger.info("Applied HSDP to the model")
        else:
            logger.info("Applied FSDP to the model")

        if parallel_dims.cp_enabled:
            logger.info("Applied Context Parallel to the model")

        if job_config.training.enable_cpu_offload:
            logger.info("Applied CPU Offloading to the model")
    elif parallel_dims.dp_replicate_enabled:
        if world_mesh.ndim > 1:
            raise RuntimeError("DDP has not supported > 1D parallelism")
        apply_ddp(
            model,
            world_mesh,
            enable_compile=job_config.training.compile,
            enable_compiled_autograd=job_config.parallelism.enable_compiled_autograd,
        )

    return model


def apply_tp(
    model: nn.Module,
    tp_mesh: DeviceMesh,
    loss_parallel: bool,
    enable_float8_tensorwise_tp: bool,
    enable_async_tp: bool,
):
    """Apply tensor parallelism."""
    # 1. Parallelize the embedding and shard its outputs (which are the first
    # transformer block's inputs)
    # 2. Parallelize the root norm layer over the sequence dim
    # 3. Parallelize the final linear output layer
    parallelize_module(
        model,
        tp_mesh,
        {
            "tok_embeddings": RowwiseParallel(
                input_layouts=Replicate(),
                output_layouts=Shard(1),
            ),
            "norm": SequenceParallel(),
            "output": ColwiseParallel(
                input_layouts=Shard(1),
                output_layouts=Shard(-1) if loss_parallel else Replicate(),
                use_local_output=not loss_parallel,
            ),
        },
    )

    # Parallel styles used for transformer block linear weights and their
    # inputs may be different for float8 linears with tensorwise scaling.
    if enable_float8_tensorwise_tp:
        # TODO(vkuzo): add the items below to __init__.py of torchao.float8 and import from there
        from torchao.float8.float8_tensor_parallel import (
            Float8ColwiseParallel,
            Float8RowwiseParallel,
            PrepareFloat8ModuleInput,
        )

        rowwise_parallel, colwise_parallel, prepare_module_input = (
            Float8RowwiseParallel,
            Float8ColwiseParallel,
            PrepareFloat8ModuleInput,
        )
    else:
        rowwise_parallel, colwise_parallel, prepare_module_input = (
            RowwiseParallel,
            ColwiseParallel,
            PrepareModuleInput,
        )

    # Apply tensor + sequence parallelism to every transformer block
    # NOTE: At the cost of model code change, we can accelerate Sequence Parallel
    #       by folding (and unfolding) the batch dimension and the sequence dimension.
    #       Examples can be found at https://github.com/pytorch/torchtitan/pull/437
    for layer_id, transformer_block in model.layers.items():
        layer_plan = {
            "attention_norm": SequenceParallel(),
            "attention": prepare_module_input(
                input_layouts=(Shard(1), None),
                desired_input_layouts=(Replicate(), None),
            ),
            "attention.wq": colwise_parallel(),
            "attention.wk": colwise_parallel(),
            "attention.wv": colwise_parallel(),
            "attention.wo": rowwise_parallel(output_layouts=Shard(1)),
            "ffn_norm": SequenceParallel(),
            "feed_forward": prepare_module_input(
                input_layouts=(Shard(1),),
                desired_input_layouts=(Replicate(),),
            ),
            "feed_forward.w1": colwise_parallel(),
            "feed_forward.w2": rowwise_parallel(output_layouts=Shard(1)),
            "feed_forward.w3": colwise_parallel(),
        }

        parallelize_module(
            module=transformer_block,
            device_mesh=tp_mesh,
            parallelize_plan=layer_plan,
        )

    if enable_async_tp:
        from torch.distributed._symmetric_memory import enable_symm_mem_for_group

        torch._inductor.config._micro_pipeline_tp = True
        enable_symm_mem_for_group(tp_mesh.get_group().group_name)

    logger.info(
        f"Applied {'Float8 tensorwise ' if enable_float8_tensorwise_tp else ''}{'Async ' if enable_async_tp else ''}"
        "Tensor Parallelism to the model"
    )


# for selective op activation checkpointing
_save_list = {
    torch.ops.aten.mm.default,
    torch.ops.aten._scaled_dot_product_efficient_attention.default,
    torch.ops.aten._scaled_dot_product_flash_attention.default,
    # for low precision training, it's useful to always save
    # the result of max, since the absolute maximum is
    # used to compute the scaling factor for quantization.
    torch.ops.aten.max.default,
}


def _apply_ac_to_transformer_block(module: nn.Module, ac_config):
    valid_ac_modes = ("full", "selective")
    if ac_config.mode not in valid_ac_modes:
        raise ValueError(
            f"Invalid AC mode: {ac_config.mode}. Valid modes: {valid_ac_modes}"
        )

    if ac_config.mode == "full":
        return ptd_checkpoint_wrapper(module, preserve_rng_state=False)

    assert ac_config.mode == "selective", f"{ac_config.mode}"
    use_op_sac = ac_config.selective_ac_option == "op"
    use_layer_sac = ac_config.selective_ac_option.isdigit()
    if not use_op_sac and not use_layer_sac:
        raise ValueError(
            f"Invalid selective AC option: {ac_config.selective_ac_option}. "
            f"Valid options: 'op' or a positive int representing layer frequency"
        )
    if use_op_sac:
        from torch.utils.checkpoint import (
            CheckpointPolicy,
            create_selective_checkpoint_contexts,
        )

        def _get_custom_policy(meta):
            def _custom_policy(ctx, func, *args, **kwargs):
                mode = "recompute" if ctx.is_recompute else "forward"
                mm_count_key = f"{mode}_mm_count"
                if func == torch.ops.aten.mm.default:
                    meta[mm_count_key] += 1
                # Saves output of all compute ops, except every second mm
                to_save = func in _save_list and not (
                    func == torch.ops.aten.mm.default and meta[mm_count_key] % 2 == 0
                )
                return (
                    CheckpointPolicy.MUST_SAVE
                    if to_save
                    else CheckpointPolicy.PREFER_RECOMPUTE
                )

            return _custom_policy

        def selective_checkpointing_context_fn():
            meta = defaultdict(int)
            return create_selective_checkpoint_contexts(_get_custom_policy(meta))

        return ptd_checkpoint_wrapper(
            module,
            context_fn=selective_checkpointing_context_fn,
            preserve_rng_state=False,
        )
    elif use_layer_sac:
        # Checkpoint every `ac_freq` of the modules passed to this function
        ac_freq = int(ac_config.selective_ac_option)
        ptd_checkpoint_wrapper.__dict__.setdefault("_count", 0)
        ptd_checkpoint_wrapper._count += 1
        if not ac_freq or ptd_checkpoint_wrapper._count % ac_freq == 0:
            return ptd_checkpoint_wrapper(module, preserve_rng_state=False)
        else:
            return module


def apply_ac(model: nn.Module, ac_config):
    """Apply activation checkpointing to the model."""
    for layer_id, transformer_block in model.layers.named_children():
        transformer_block = _apply_ac_to_transformer_block(transformer_block, ac_config)
        model.layers.register_module(layer_id, transformer_block)

    logger.info(f"Applied {ac_config.mode} activation checkpointing to the model")


def apply_compile(model: nn.Module):
    """
    Apply torch.compile to each TransformerBlock, which makes compilation efficient due to
    repeated structure. Alternatively one can compile the whole model (after applying DP).
    """
    for layer_id, transformer_block in model.layers.named_children():
        transformer_block = torch.compile(transformer_block, fullgraph=True)
        model.layers.register_module(layer_id, transformer_block)

    logger.info("Compiling each TransformerBlock with torch.compile")


def apply_fsdp(
    model: nn.Module,
    dp_mesh: DeviceMesh,
    param_dtype: torch.dtype,
    reduce_dtype: torch.dtype,
    pp_enabled: bool,
    cpu_offload: bool = False,
    reshard_after_forward_policy: str = "default",
):
    """
    Apply data parallelism (via FSDP2) to the model.

    Args:
        model (nn.Module): The model to apply data parallelism to.
        dp_mesh (DeviceMesh): The device mesh to use for data parallelism.
        param_dtype (torch.dtype): The data type to use for model parameters.
        reduce_dtype (torch.dtype): The data type to use for reduction operations.
        pp_enabled (bool): Whether pipeline parallelism is enabled.
        cpu_offload (bool, optional): Whether to offload model parameters to CPU. Defaults to False.
        reshard_after_forward_policy (str, optional): The policy to use for resharding after forward pass. Defaults to "default".
            Other options: "never", "always".
            - "default" applies default resharding behavior, implementing "smart defaults" for known optimal scenarios.
            - "always" will enable `reshard_after_forward` for all forward passes.
            - "never" will disable `reshard_after_forward` for all forward passes.

    """
    mp_policy = MixedPrecisionPolicy(param_dtype=param_dtype, reduce_dtype=reduce_dtype)
    fsdp_config = {"mesh": dp_mesh, "mp_policy": mp_policy}
    if cpu_offload:
        fsdp_config["offload_policy"] = CPUOffloadPolicy()

    for layer_id, transformer_block in model.layers.items():
        if reshard_after_forward_policy == "always":
            reshard_after_forward = True
        elif reshard_after_forward_policy == "never":
            reshard_after_forward = False
        elif reshard_after_forward_policy == "default":
            if pp_enabled:
                # For PP, do not reshard after forward to avoid per-microbatch
                # all-gathers, which can be expensive and non-overlapped
                reshard_after_forward = False
            else:
                # As an optimization, do not reshard after forward for the last
                # transformer block since FSDP would prefetch it immediately
                reshard_after_forward = int(layer_id) < len(model.layers) - 1
        else:
            raise ValueError(
                f"Invalid reshard_after_forward_policy: {reshard_after_forward_policy}."
            )
        fully_shard(
            transformer_block,
            **fsdp_config,
            reshard_after_forward=reshard_after_forward,
        )
    fully_shard(model, **fsdp_config, reshard_after_forward=not pp_enabled)


def apply_ddp(
    model: nn.Module,
    dp_mesh: DeviceMesh,
    enable_compile: bool,
    enable_compiled_autograd: bool,
):
    if enable_compile:
        if enable_compiled_autograd:
            torch._dynamo.config.optimize_ddp = (
                "python_reducer_without_compiled_forward"
            )
        else:
            torch._dynamo.config.optimize_ddp = "ddp_optimizer"

    replicate(model, device_mesh=dp_mesh, bucket_cap_mb=100)

    logger.info("Applied DDP to the model")