File size: 15,397 Bytes
4db79c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# This file applies the PT-D parallelisms (except pipeline parallelism) and various
# training techniques (e.g. activation checkpointing and compile) to the Llama model.
from collections import defaultdict
import torch
import torch.nn as nn
from torch.distributed._composable.replicate import replicate
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper as ptd_checkpoint_wrapper,
)
from torch.distributed.device_mesh import DeviceMesh
from torch.distributed.fsdp import CPUOffloadPolicy, fully_shard, MixedPrecisionPolicy
from torch.distributed.tensor import Replicate, Shard
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
PrepareModuleInput,
RowwiseParallel,
SequenceParallel,
)
from torchtitan.config_manager import JobConfig, TORCH_DTYPE_MAP
from torchtitan.distributed import ParallelDims
from torchtitan.tools.logging import logger
def parallelize_llama(
model: nn.Module,
world_mesh: DeviceMesh,
parallel_dims: ParallelDims,
job_config: JobConfig,
):
"""
Apply tensor parallelism, activation checkpointing, torch.compile, and data
parallelism to the model.
NOTE: The passed-in model preferably should be on meta device. Otherwise,
the model must fit on GPU or CPU memory.
"""
if parallel_dims.tp_enabled:
if (
job_config.parallelism.enable_async_tensor_parallel
and not job_config.training.compile
):
raise RuntimeError("Async TP requires --training.compile")
enable_float8_linear = "float8" in job_config.model.converters
float8_is_rowwise = job_config.float8.recipe_name in (
"rowwise",
"rowwise_with_gw_hp",
)
# For now, float8 all-gather with TP is only supported for tensorwise
# float8 scaling recipes. For rowwise recipes, we use regular TP and
# all-gather happens in high precision.
enable_float8_tensorwise_tp = enable_float8_linear and not float8_is_rowwise
apply_tp(
model,
world_mesh["tp"],
loss_parallel=parallel_dims.loss_parallel_enabled,
enable_float8_tensorwise_tp=enable_float8_tensorwise_tp,
enable_async_tp=job_config.parallelism.enable_async_tensor_parallel,
)
if job_config.model.use_flex_attn:
if job_config.activation_checkpoint.mode == "selective":
raise ValueError(
"FlexAttention is not compatible with selective AC yet. "
"See https://github.com/pytorch/pytorch/issues/147879"
)
if parallel_dims.cp_enabled:
raise ValueError(
"FlexAttention is not compatible with CP yet. "
"We are still working on this."
)
if job_config.activation_checkpoint.mode != "none":
apply_ac(model, job_config.activation_checkpoint)
# turn on per-TransformerBlock compile after AC wrapping and before FSDP
if job_config.training.compile:
apply_compile(model)
if (
parallel_dims.dp_shard_enabled or parallel_dims.cp_enabled
): # apply FSDP or HSDP, potentially with Context Parallel
if parallel_dims.dp_replicate_enabled:
dp_mesh_dim_names = ("dp_replicate", "dp_shard_cp")
else:
dp_mesh_dim_names = ("dp_shard_cp",)
apply_fsdp(
model,
world_mesh[tuple(dp_mesh_dim_names)],
param_dtype=TORCH_DTYPE_MAP[job_config.training.mixed_precision_param],
reduce_dtype=TORCH_DTYPE_MAP[job_config.training.mixed_precision_reduce],
pp_enabled=parallel_dims.pp_enabled,
cpu_offload=job_config.training.enable_cpu_offload,
reshard_after_forward_policy=job_config.parallelism.fsdp_reshard_after_forward,
)
if parallel_dims.dp_replicate_enabled:
logger.info("Applied HSDP to the model")
else:
logger.info("Applied FSDP to the model")
if parallel_dims.cp_enabled:
logger.info("Applied Context Parallel to the model")
if job_config.training.enable_cpu_offload:
logger.info("Applied CPU Offloading to the model")
elif parallel_dims.dp_replicate_enabled:
if world_mesh.ndim > 1:
raise RuntimeError("DDP has not supported > 1D parallelism")
apply_ddp(
model,
world_mesh,
enable_compile=job_config.training.compile,
enable_compiled_autograd=job_config.parallelism.enable_compiled_autograd,
)
return model
def apply_tp(
model: nn.Module,
tp_mesh: DeviceMesh,
loss_parallel: bool,
enable_float8_tensorwise_tp: bool,
enable_async_tp: bool,
):
"""Apply tensor parallelism."""
# 1. Parallelize the embedding and shard its outputs (which are the first
# transformer block's inputs)
# 2. Parallelize the root norm layer over the sequence dim
# 3. Parallelize the final linear output layer
parallelize_module(
model,
tp_mesh,
{
"tok_embeddings": RowwiseParallel(
input_layouts=Replicate(),
output_layouts=Shard(1),
),
"norm": SequenceParallel(),
"output": ColwiseParallel(
input_layouts=Shard(1),
output_layouts=Shard(-1) if loss_parallel else Replicate(),
use_local_output=not loss_parallel,
),
},
)
# Parallel styles used for transformer block linear weights and their
# inputs may be different for float8 linears with tensorwise scaling.
if enable_float8_tensorwise_tp:
# TODO(vkuzo): add the items below to __init__.py of torchao.float8 and import from there
from torchao.float8.float8_tensor_parallel import (
Float8ColwiseParallel,
Float8RowwiseParallel,
PrepareFloat8ModuleInput,
)
rowwise_parallel, colwise_parallel, prepare_module_input = (
Float8RowwiseParallel,
Float8ColwiseParallel,
PrepareFloat8ModuleInput,
)
else:
rowwise_parallel, colwise_parallel, prepare_module_input = (
RowwiseParallel,
ColwiseParallel,
PrepareModuleInput,
)
# Apply tensor + sequence parallelism to every transformer block
# NOTE: At the cost of model code change, we can accelerate Sequence Parallel
# by folding (and unfolding) the batch dimension and the sequence dimension.
# Examples can be found at https://github.com/pytorch/torchtitan/pull/437
for layer_id, transformer_block in model.layers.items():
layer_plan = {
"attention_norm": SequenceParallel(),
"attention": prepare_module_input(
input_layouts=(Shard(1), None),
desired_input_layouts=(Replicate(), None),
),
"attention.wq": colwise_parallel(),
"attention.wk": colwise_parallel(),
"attention.wv": colwise_parallel(),
"attention.wo": rowwise_parallel(output_layouts=Shard(1)),
"ffn_norm": SequenceParallel(),
"feed_forward": prepare_module_input(
input_layouts=(Shard(1),),
desired_input_layouts=(Replicate(),),
),
"feed_forward.w1": colwise_parallel(),
"feed_forward.w2": rowwise_parallel(output_layouts=Shard(1)),
"feed_forward.w3": colwise_parallel(),
}
parallelize_module(
module=transformer_block,
device_mesh=tp_mesh,
parallelize_plan=layer_plan,
)
if enable_async_tp:
from torch.distributed._symmetric_memory import enable_symm_mem_for_group
torch._inductor.config._micro_pipeline_tp = True
enable_symm_mem_for_group(tp_mesh.get_group().group_name)
logger.info(
f"Applied {'Float8 tensorwise ' if enable_float8_tensorwise_tp else ''}{'Async ' if enable_async_tp else ''}"
"Tensor Parallelism to the model"
)
# for selective op activation checkpointing
_save_list = {
torch.ops.aten.mm.default,
torch.ops.aten._scaled_dot_product_efficient_attention.default,
torch.ops.aten._scaled_dot_product_flash_attention.default,
# for low precision training, it's useful to always save
# the result of max, since the absolute maximum is
# used to compute the scaling factor for quantization.
torch.ops.aten.max.default,
}
def _apply_ac_to_transformer_block(module: nn.Module, ac_config):
valid_ac_modes = ("full", "selective")
if ac_config.mode not in valid_ac_modes:
raise ValueError(
f"Invalid AC mode: {ac_config.mode}. Valid modes: {valid_ac_modes}"
)
if ac_config.mode == "full":
return ptd_checkpoint_wrapper(module, preserve_rng_state=False)
assert ac_config.mode == "selective", f"{ac_config.mode}"
use_op_sac = ac_config.selective_ac_option == "op"
use_layer_sac = ac_config.selective_ac_option.isdigit()
if not use_op_sac and not use_layer_sac:
raise ValueError(
f"Invalid selective AC option: {ac_config.selective_ac_option}. "
f"Valid options: 'op' or a positive int representing layer frequency"
)
if use_op_sac:
from torch.utils.checkpoint import (
CheckpointPolicy,
create_selective_checkpoint_contexts,
)
def _get_custom_policy(meta):
def _custom_policy(ctx, func, *args, **kwargs):
mode = "recompute" if ctx.is_recompute else "forward"
mm_count_key = f"{mode}_mm_count"
if func == torch.ops.aten.mm.default:
meta[mm_count_key] += 1
# Saves output of all compute ops, except every second mm
to_save = func in _save_list and not (
func == torch.ops.aten.mm.default and meta[mm_count_key] % 2 == 0
)
return (
CheckpointPolicy.MUST_SAVE
if to_save
else CheckpointPolicy.PREFER_RECOMPUTE
)
return _custom_policy
def selective_checkpointing_context_fn():
meta = defaultdict(int)
return create_selective_checkpoint_contexts(_get_custom_policy(meta))
return ptd_checkpoint_wrapper(
module,
context_fn=selective_checkpointing_context_fn,
preserve_rng_state=False,
)
elif use_layer_sac:
# Checkpoint every `ac_freq` of the modules passed to this function
ac_freq = int(ac_config.selective_ac_option)
ptd_checkpoint_wrapper.__dict__.setdefault("_count", 0)
ptd_checkpoint_wrapper._count += 1
if not ac_freq or ptd_checkpoint_wrapper._count % ac_freq == 0:
return ptd_checkpoint_wrapper(module, preserve_rng_state=False)
else:
return module
def apply_ac(model: nn.Module, ac_config):
"""Apply activation checkpointing to the model."""
for layer_id, transformer_block in model.layers.named_children():
transformer_block = _apply_ac_to_transformer_block(transformer_block, ac_config)
model.layers.register_module(layer_id, transformer_block)
logger.info(f"Applied {ac_config.mode} activation checkpointing to the model")
def apply_compile(model: nn.Module):
"""
Apply torch.compile to each TransformerBlock, which makes compilation efficient due to
repeated structure. Alternatively one can compile the whole model (after applying DP).
"""
for layer_id, transformer_block in model.layers.named_children():
transformer_block = torch.compile(transformer_block, fullgraph=True)
model.layers.register_module(layer_id, transformer_block)
logger.info("Compiling each TransformerBlock with torch.compile")
def apply_fsdp(
model: nn.Module,
dp_mesh: DeviceMesh,
param_dtype: torch.dtype,
reduce_dtype: torch.dtype,
pp_enabled: bool,
cpu_offload: bool = False,
reshard_after_forward_policy: str = "default",
):
"""
Apply data parallelism (via FSDP2) to the model.
Args:
model (nn.Module): The model to apply data parallelism to.
dp_mesh (DeviceMesh): The device mesh to use for data parallelism.
param_dtype (torch.dtype): The data type to use for model parameters.
reduce_dtype (torch.dtype): The data type to use for reduction operations.
pp_enabled (bool): Whether pipeline parallelism is enabled.
cpu_offload (bool, optional): Whether to offload model parameters to CPU. Defaults to False.
reshard_after_forward_policy (str, optional): The policy to use for resharding after forward pass. Defaults to "default".
Other options: "never", "always".
- "default" applies default resharding behavior, implementing "smart defaults" for known optimal scenarios.
- "always" will enable `reshard_after_forward` for all forward passes.
- "never" will disable `reshard_after_forward` for all forward passes.
"""
mp_policy = MixedPrecisionPolicy(param_dtype=param_dtype, reduce_dtype=reduce_dtype)
fsdp_config = {"mesh": dp_mesh, "mp_policy": mp_policy}
if cpu_offload:
fsdp_config["offload_policy"] = CPUOffloadPolicy()
for layer_id, transformer_block in model.layers.items():
if reshard_after_forward_policy == "always":
reshard_after_forward = True
elif reshard_after_forward_policy == "never":
reshard_after_forward = False
elif reshard_after_forward_policy == "default":
if pp_enabled:
# For PP, do not reshard after forward to avoid per-microbatch
# all-gathers, which can be expensive and non-overlapped
reshard_after_forward = False
else:
# As an optimization, do not reshard after forward for the last
# transformer block since FSDP would prefetch it immediately
reshard_after_forward = int(layer_id) < len(model.layers) - 1
else:
raise ValueError(
f"Invalid reshard_after_forward_policy: {reshard_after_forward_policy}."
)
fully_shard(
transformer_block,
**fsdp_config,
reshard_after_forward=reshard_after_forward,
)
fully_shard(model, **fsdp_config, reshard_after_forward=not pp_enabled)
def apply_ddp(
model: nn.Module,
dp_mesh: DeviceMesh,
enable_compile: bool,
enable_compiled_autograd: bool,
):
if enable_compile:
if enable_compiled_autograd:
torch._dynamo.config.optimize_ddp = (
"python_reducer_without_compiled_forward"
)
else:
torch._dynamo.config.optimize_ddp = "ddp_optimizer"
replicate(model, device_mesh=dp_mesh, bucket_cap_mb=100)
logger.info("Applied DDP to the model")
|