Upload examples/smartphone_deployment.py with huggingface_hub
Browse files
examples/smartphone_deployment.py
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
AuraMind Smartphone Deployment Example
|
4 |
+
Complete implementation for mobile applications
|
5 |
+
"""
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
9 |
+
import time
|
10 |
+
import psutil
|
11 |
+
import os
|
12 |
+
from typing import Dict, List, Optional
|
13 |
+
import json
|
14 |
+
|
15 |
+
class SmartphoneAuraMind:
|
16 |
+
"""
|
17 |
+
Smartphone-optimized AuraMind implementation
|
18 |
+
Designed for efficient mobile deployment with memory and battery optimization
|
19 |
+
"""
|
20 |
+
|
21 |
+
def __init__(self, model_variant: str = "270m", device: str = "auto"):
|
22 |
+
"""
|
23 |
+
Initialize AuraMind for smartphone deployment
|
24 |
+
|
25 |
+
Args:
|
26 |
+
model_variant: "270m", "180m", or "90m"
|
27 |
+
device: "auto", "cpu", or "cuda"
|
28 |
+
"""
|
29 |
+
self.model_variant = model_variant
|
30 |
+
self.model_name = f"zail-ai/Auramind"
|
31 |
+
|
32 |
+
print(f"Loading AuraMind {model_variant} for smartphone deployment...")
|
33 |
+
|
34 |
+
# Smartphone-optimized loading configuration
|
35 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
36 |
+
self.model_name,
|
37 |
+
use_fast=True, # Fast tokenizer for mobile
|
38 |
+
trust_remote_code=False
|
39 |
+
)
|
40 |
+
|
41 |
+
# Memory-efficient model loading
|
42 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
43 |
+
self.model_name,
|
44 |
+
torch_dtype=torch.float16, # Half precision essential for mobile
|
45 |
+
device_map=device,
|
46 |
+
low_cpu_mem_usage=True, # Optimize CPU memory usage
|
47 |
+
use_cache=True, # Enable KV caching
|
48 |
+
trust_remote_code=False
|
49 |
+
)
|
50 |
+
|
51 |
+
# Mobile-specific optimizations
|
52 |
+
if hasattr(self.model, 'half'):
|
53 |
+
self.model = self.model.half()
|
54 |
+
|
55 |
+
# Set to evaluation mode for inference
|
56 |
+
self.model.eval()
|
57 |
+
|
58 |
+
print(f"✅ AuraMind {model_variant} loaded successfully")
|
59 |
+
self._print_system_info()
|
60 |
+
|
61 |
+
def _print_system_info(self):
|
62 |
+
"""Print system information for mobile deployment"""
|
63 |
+
process = psutil.Process(os.getpid())
|
64 |
+
memory_mb = process.memory_info().rss / 1024 / 1024
|
65 |
+
|
66 |
+
print(f"📱 System Information:")
|
67 |
+
print(f" Memory Usage: {memory_mb:.1f} MB")
|
68 |
+
|
69 |
+
if torch.cuda.is_available():
|
70 |
+
gpu_memory = torch.cuda.memory_allocated() / 1024 / 1024
|
71 |
+
gpu_name = torch.cuda.get_device_name(0)
|
72 |
+
print(f" GPU: {gpu_name}")
|
73 |
+
print(f" GPU Memory: {gpu_memory:.1f} MB")
|
74 |
+
else:
|
75 |
+
print(" Device: CPU")
|
76 |
+
|
77 |
+
def chat(self, message: str, mode: str = "Assistant",
|
78 |
+
max_tokens: int = 200, temperature: float = 0.7) -> Dict:
|
79 |
+
"""
|
80 |
+
Generate response with performance monitoring
|
81 |
+
|
82 |
+
Args:
|
83 |
+
message: User input message
|
84 |
+
mode: "Therapist" or "Assistant"
|
85 |
+
max_tokens: Maximum response length
|
86 |
+
temperature: Response creativity (0.1-1.0)
|
87 |
+
|
88 |
+
Returns:
|
89 |
+
Dict containing response, metrics, and metadata
|
90 |
+
"""
|
91 |
+
start_time = time.time()
|
92 |
+
|
93 |
+
# Format prompt for dual-mode architecture
|
94 |
+
prompt = f"<|start_of_turn|>user\n[{mode} Mode] {message}<|end_of_turn|>\n<|start_of_turn|>model\n"
|
95 |
+
|
96 |
+
# Tokenize with mobile optimization
|
97 |
+
inputs = self.tokenizer(
|
98 |
+
prompt,
|
99 |
+
return_tensors="pt",
|
100 |
+
truncation=True,
|
101 |
+
max_length=512, # Optimized for mobile memory
|
102 |
+
padding=False
|
103 |
+
)
|
104 |
+
|
105 |
+
# Mobile-optimized generation configuration
|
106 |
+
generation_config = {
|
107 |
+
"max_new_tokens": max_tokens,
|
108 |
+
"temperature": temperature,
|
109 |
+
"do_sample": True,
|
110 |
+
"top_p": 0.9,
|
111 |
+
"repetition_penalty": 1.1,
|
112 |
+
"pad_token_id": self.tokenizer.eos_token_id,
|
113 |
+
"eos_token_id": self.tokenizer.eos_token_id,
|
114 |
+
"use_cache": True, # Essential for mobile performance
|
115 |
+
}
|
116 |
+
|
117 |
+
# Generate response with memory optimization
|
118 |
+
with torch.no_grad():
|
119 |
+
outputs = self.model.generate(
|
120 |
+
**inputs,
|
121 |
+
**generation_config
|
122 |
+
)
|
123 |
+
|
124 |
+
# Decode response
|
125 |
+
full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
126 |
+
response = full_response.split("<|start_of_turn|>model\n")[-1].strip()
|
127 |
+
|
128 |
+
# Calculate performance metrics
|
129 |
+
end_time = time.time()
|
130 |
+
inference_time = (end_time - start_time) * 1000 # Convert to milliseconds
|
131 |
+
|
132 |
+
# Memory usage
|
133 |
+
process = psutil.Process(os.getpid())
|
134 |
+
memory_mb = process.memory_info().rss / 1024 / 1024
|
135 |
+
|
136 |
+
return {
|
137 |
+
"response": response,
|
138 |
+
"mode": mode,
|
139 |
+
"inference_time_ms": round(inference_time, 2),
|
140 |
+
"memory_usage_mb": round(memory_mb, 1),
|
141 |
+
"input_tokens": len(inputs["input_ids"][0]),
|
142 |
+
"output_tokens": len(outputs[0]) - len(inputs["input_ids"][0]),
|
143 |
+
"timestamp": datetime.now().isoformat()
|
144 |
+
}
|
145 |
+
|
146 |
+
def batch_chat(self, messages: List[Dict], batch_size: int = 4) -> List[Dict]:
|
147 |
+
"""
|
148 |
+
Process multiple messages efficiently for mobile deployment
|
149 |
+
|
150 |
+
Args:
|
151 |
+
messages: List of {"message": str, "mode": str} dictionaries
|
152 |
+
batch_size: Batch size for processing (mobile-optimized)
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
List of response dictionaries
|
156 |
+
"""
|
157 |
+
results = []
|
158 |
+
|
159 |
+
for i in range(0, len(messages), batch_size):
|
160 |
+
batch = messages[i:i + batch_size]
|
161 |
+
|
162 |
+
for msg_dict in batch:
|
163 |
+
result = self.chat(
|
164 |
+
message=msg_dict["message"],
|
165 |
+
mode=msg_dict.get("mode", "Assistant")
|
166 |
+
)
|
167 |
+
results.append(result)
|
168 |
+
|
169 |
+
# Brief pause to prevent overheating on mobile
|
170 |
+
time.sleep(0.1)
|
171 |
+
|
172 |
+
return results
|
173 |
+
|
174 |
+
def get_model_info(self) -> Dict:
|
175 |
+
"""Get comprehensive model information for mobile deployment"""
|
176 |
+
return {
|
177 |
+
"model_name": self.model_name,
|
178 |
+
"variant": self.model_variant,
|
179 |
+
"config": {
|
180 |
+
"vocab_size": self.tokenizer.vocab_size,
|
181 |
+
"max_position_embeddings": getattr(self.model.config, 'max_position_embeddings', 'Unknown'),
|
182 |
+
"hidden_size": getattr(self.model.config, 'hidden_size', 'Unknown'),
|
183 |
+
"num_attention_heads": getattr(self.model.config, 'num_attention_heads', 'Unknown'),
|
184 |
+
"num_hidden_layers": getattr(self.model.config, 'num_hidden_layers', 'Unknown')
|
185 |
+
},
|
186 |
+
"memory_requirements": {
|
187 |
+
"minimum_ram": self.model_variants.get(f"auramind-{self.model_variant}", {}).get("memory_usage", "Unknown"),
|
188 |
+
"recommended_storage": "1-2GB free space",
|
189 |
+
"os_requirements": "Android 8+ or iOS 12+"
|
190 |
+
},
|
191 |
+
"performance": {
|
192 |
+
"expected_inference_speed": self.model_variants.get(f"auramind-{self.model_variant}", {}).get("inference_speed", "Unknown"),
|
193 |
+
"quantization": self.model_variants.get(f"auramind-{self.model_variant}", {}).get("quantization", "Unknown")
|
194 |
+
}
|
195 |
+
}
|
196 |
+
|
197 |
+
# Demo usage for smartphone deployment
|
198 |
+
def demonstrate_mobile_deployment():
|
199 |
+
"""Demonstrate AuraMind smartphone deployment"""
|
200 |
+
|
201 |
+
print("🚀 AuraMind Mobile Demo")
|
202 |
+
print("=" * 50)
|
203 |
+
|
204 |
+
# Initialize for smartphone (using lighter variant for demo)
|
205 |
+
auramind = SmartphoneAuraMind(model_variant="270m", device="cpu")
|
206 |
+
|
207 |
+
# Sample conversations demonstrating dual-mode capability
|
208 |
+
sample_conversations = [
|
209 |
+
{
|
210 |
+
"message": "I'm feeling overwhelmed with my workload and having trouble sleeping",
|
211 |
+
"mode": "Therapist"
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"message": "Help me organize my daily tasks more efficiently",
|
215 |
+
"mode": "Assistant"
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"message": "I'm having anxiety about an upcoming presentation",
|
219 |
+
"mode": "Therapist"
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"message": "What's the best way to track my productivity goals?",
|
223 |
+
"mode": "Assistant"
|
224 |
+
}
|
225 |
+
]
|
226 |
+
|
227 |
+
print("\n🧠 Testing Dual-Mode Responses:")
|
228 |
+
print("-" * 40)
|
229 |
+
|
230 |
+
for i, conversation in enumerate(sample_conversations, 1):
|
231 |
+
print(f"\n[Test {i}] {conversation['mode']} Mode")
|
232 |
+
print(f"User: {conversation['message']}")
|
233 |
+
|
234 |
+
result = auramind.chat(
|
235 |
+
message=conversation["message"],
|
236 |
+
mode=conversation["mode"],
|
237 |
+
max_tokens=150,
|
238 |
+
temperature=0.7
|
239 |
+
)
|
240 |
+
|
241 |
+
print(f"AuraMind: {result['response']}")
|
242 |
+
print(f"⏱️ Inference: {result['inference_time_ms']}ms | 💾 Memory: {result['memory_usage_mb']}MB")
|
243 |
+
|
244 |
+
# Small delay for demonstration
|
245 |
+
time.sleep(1)
|
246 |
+
|
247 |
+
print("\n📊 Model Information:")
|
248 |
+
print("-" * 40)
|
249 |
+
model_info = auramind.get_model_info()
|
250 |
+
print(json.dumps(model_info, indent=2))
|
251 |
+
|
252 |
+
print("\n✅ Mobile deployment demonstration completed!")
|
253 |
+
print("Ready for smartphone integration with Android/iOS apps.")
|
254 |
+
|
255 |
+
if __name__ == "__main__":
|
256 |
+
demonstrate_mobile_deployment()
|