ibrahim256 commited on
Commit
66f9f0f
·
verified ·
1 Parent(s): 901de98

Upload examples/smartphone_deployment.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. examples/smartphone_deployment.py +256 -0
examples/smartphone_deployment.py ADDED
@@ -0,0 +1,256 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ AuraMind Smartphone Deployment Example
4
+ Complete implementation for mobile applications
5
+ """
6
+
7
+ import torch
8
+ from transformers import AutoTokenizer, AutoModelForCausalLM
9
+ import time
10
+ import psutil
11
+ import os
12
+ from typing import Dict, List, Optional
13
+ import json
14
+
15
+ class SmartphoneAuraMind:
16
+ """
17
+ Smartphone-optimized AuraMind implementation
18
+ Designed for efficient mobile deployment with memory and battery optimization
19
+ """
20
+
21
+ def __init__(self, model_variant: str = "270m", device: str = "auto"):
22
+ """
23
+ Initialize AuraMind for smartphone deployment
24
+
25
+ Args:
26
+ model_variant: "270m", "180m", or "90m"
27
+ device: "auto", "cpu", or "cuda"
28
+ """
29
+ self.model_variant = model_variant
30
+ self.model_name = f"zail-ai/Auramind"
31
+
32
+ print(f"Loading AuraMind {model_variant} for smartphone deployment...")
33
+
34
+ # Smartphone-optimized loading configuration
35
+ self.tokenizer = AutoTokenizer.from_pretrained(
36
+ self.model_name,
37
+ use_fast=True, # Fast tokenizer for mobile
38
+ trust_remote_code=False
39
+ )
40
+
41
+ # Memory-efficient model loading
42
+ self.model = AutoModelForCausalLM.from_pretrained(
43
+ self.model_name,
44
+ torch_dtype=torch.float16, # Half precision essential for mobile
45
+ device_map=device,
46
+ low_cpu_mem_usage=True, # Optimize CPU memory usage
47
+ use_cache=True, # Enable KV caching
48
+ trust_remote_code=False
49
+ )
50
+
51
+ # Mobile-specific optimizations
52
+ if hasattr(self.model, 'half'):
53
+ self.model = self.model.half()
54
+
55
+ # Set to evaluation mode for inference
56
+ self.model.eval()
57
+
58
+ print(f"✅ AuraMind {model_variant} loaded successfully")
59
+ self._print_system_info()
60
+
61
+ def _print_system_info(self):
62
+ """Print system information for mobile deployment"""
63
+ process = psutil.Process(os.getpid())
64
+ memory_mb = process.memory_info().rss / 1024 / 1024
65
+
66
+ print(f"📱 System Information:")
67
+ print(f" Memory Usage: {memory_mb:.1f} MB")
68
+
69
+ if torch.cuda.is_available():
70
+ gpu_memory = torch.cuda.memory_allocated() / 1024 / 1024
71
+ gpu_name = torch.cuda.get_device_name(0)
72
+ print(f" GPU: {gpu_name}")
73
+ print(f" GPU Memory: {gpu_memory:.1f} MB")
74
+ else:
75
+ print(" Device: CPU")
76
+
77
+ def chat(self, message: str, mode: str = "Assistant",
78
+ max_tokens: int = 200, temperature: float = 0.7) -> Dict:
79
+ """
80
+ Generate response with performance monitoring
81
+
82
+ Args:
83
+ message: User input message
84
+ mode: "Therapist" or "Assistant"
85
+ max_tokens: Maximum response length
86
+ temperature: Response creativity (0.1-1.0)
87
+
88
+ Returns:
89
+ Dict containing response, metrics, and metadata
90
+ """
91
+ start_time = time.time()
92
+
93
+ # Format prompt for dual-mode architecture
94
+ prompt = f"<|start_of_turn|>user\n[{mode} Mode] {message}<|end_of_turn|>\n<|start_of_turn|>model\n"
95
+
96
+ # Tokenize with mobile optimization
97
+ inputs = self.tokenizer(
98
+ prompt,
99
+ return_tensors="pt",
100
+ truncation=True,
101
+ max_length=512, # Optimized for mobile memory
102
+ padding=False
103
+ )
104
+
105
+ # Mobile-optimized generation configuration
106
+ generation_config = {
107
+ "max_new_tokens": max_tokens,
108
+ "temperature": temperature,
109
+ "do_sample": True,
110
+ "top_p": 0.9,
111
+ "repetition_penalty": 1.1,
112
+ "pad_token_id": self.tokenizer.eos_token_id,
113
+ "eos_token_id": self.tokenizer.eos_token_id,
114
+ "use_cache": True, # Essential for mobile performance
115
+ }
116
+
117
+ # Generate response with memory optimization
118
+ with torch.no_grad():
119
+ outputs = self.model.generate(
120
+ **inputs,
121
+ **generation_config
122
+ )
123
+
124
+ # Decode response
125
+ full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
126
+ response = full_response.split("<|start_of_turn|>model\n")[-1].strip()
127
+
128
+ # Calculate performance metrics
129
+ end_time = time.time()
130
+ inference_time = (end_time - start_time) * 1000 # Convert to milliseconds
131
+
132
+ # Memory usage
133
+ process = psutil.Process(os.getpid())
134
+ memory_mb = process.memory_info().rss / 1024 / 1024
135
+
136
+ return {
137
+ "response": response,
138
+ "mode": mode,
139
+ "inference_time_ms": round(inference_time, 2),
140
+ "memory_usage_mb": round(memory_mb, 1),
141
+ "input_tokens": len(inputs["input_ids"][0]),
142
+ "output_tokens": len(outputs[0]) - len(inputs["input_ids"][0]),
143
+ "timestamp": datetime.now().isoformat()
144
+ }
145
+
146
+ def batch_chat(self, messages: List[Dict], batch_size: int = 4) -> List[Dict]:
147
+ """
148
+ Process multiple messages efficiently for mobile deployment
149
+
150
+ Args:
151
+ messages: List of {"message": str, "mode": str} dictionaries
152
+ batch_size: Batch size for processing (mobile-optimized)
153
+
154
+ Returns:
155
+ List of response dictionaries
156
+ """
157
+ results = []
158
+
159
+ for i in range(0, len(messages), batch_size):
160
+ batch = messages[i:i + batch_size]
161
+
162
+ for msg_dict in batch:
163
+ result = self.chat(
164
+ message=msg_dict["message"],
165
+ mode=msg_dict.get("mode", "Assistant")
166
+ )
167
+ results.append(result)
168
+
169
+ # Brief pause to prevent overheating on mobile
170
+ time.sleep(0.1)
171
+
172
+ return results
173
+
174
+ def get_model_info(self) -> Dict:
175
+ """Get comprehensive model information for mobile deployment"""
176
+ return {
177
+ "model_name": self.model_name,
178
+ "variant": self.model_variant,
179
+ "config": {
180
+ "vocab_size": self.tokenizer.vocab_size,
181
+ "max_position_embeddings": getattr(self.model.config, 'max_position_embeddings', 'Unknown'),
182
+ "hidden_size": getattr(self.model.config, 'hidden_size', 'Unknown'),
183
+ "num_attention_heads": getattr(self.model.config, 'num_attention_heads', 'Unknown'),
184
+ "num_hidden_layers": getattr(self.model.config, 'num_hidden_layers', 'Unknown')
185
+ },
186
+ "memory_requirements": {
187
+ "minimum_ram": self.model_variants.get(f"auramind-{self.model_variant}", {}).get("memory_usage", "Unknown"),
188
+ "recommended_storage": "1-2GB free space",
189
+ "os_requirements": "Android 8+ or iOS 12+"
190
+ },
191
+ "performance": {
192
+ "expected_inference_speed": self.model_variants.get(f"auramind-{self.model_variant}", {}).get("inference_speed", "Unknown"),
193
+ "quantization": self.model_variants.get(f"auramind-{self.model_variant}", {}).get("quantization", "Unknown")
194
+ }
195
+ }
196
+
197
+ # Demo usage for smartphone deployment
198
+ def demonstrate_mobile_deployment():
199
+ """Demonstrate AuraMind smartphone deployment"""
200
+
201
+ print("🚀 AuraMind Mobile Demo")
202
+ print("=" * 50)
203
+
204
+ # Initialize for smartphone (using lighter variant for demo)
205
+ auramind = SmartphoneAuraMind(model_variant="270m", device="cpu")
206
+
207
+ # Sample conversations demonstrating dual-mode capability
208
+ sample_conversations = [
209
+ {
210
+ "message": "I'm feeling overwhelmed with my workload and having trouble sleeping",
211
+ "mode": "Therapist"
212
+ },
213
+ {
214
+ "message": "Help me organize my daily tasks more efficiently",
215
+ "mode": "Assistant"
216
+ },
217
+ {
218
+ "message": "I'm having anxiety about an upcoming presentation",
219
+ "mode": "Therapist"
220
+ },
221
+ {
222
+ "message": "What's the best way to track my productivity goals?",
223
+ "mode": "Assistant"
224
+ }
225
+ ]
226
+
227
+ print("\n🧠 Testing Dual-Mode Responses:")
228
+ print("-" * 40)
229
+
230
+ for i, conversation in enumerate(sample_conversations, 1):
231
+ print(f"\n[Test {i}] {conversation['mode']} Mode")
232
+ print(f"User: {conversation['message']}")
233
+
234
+ result = auramind.chat(
235
+ message=conversation["message"],
236
+ mode=conversation["mode"],
237
+ max_tokens=150,
238
+ temperature=0.7
239
+ )
240
+
241
+ print(f"AuraMind: {result['response']}")
242
+ print(f"⏱️ Inference: {result['inference_time_ms']}ms | 💾 Memory: {result['memory_usage_mb']}MB")
243
+
244
+ # Small delay for demonstration
245
+ time.sleep(1)
246
+
247
+ print("\n📊 Model Information:")
248
+ print("-" * 40)
249
+ model_info = auramind.get_model_info()
250
+ print(json.dumps(model_info, indent=2))
251
+
252
+ print("\n✅ Mobile deployment demonstration completed!")
253
+ print("Ready for smartphone integration with Android/iOS apps.")
254
+
255
+ if __name__ == "__main__":
256
+ demonstrate_mobile_deployment()