File size: 2,005 Bytes
527368b 36e155c 5362366 527368b 36e155c 527368b bda7975 527368b 64d4e31 527368b 6b391dc 527368b 6b391dc 527368b bda7975 64d4e31 527368b 925265a 64d4e31 527368b 64d4e31 527368b 925265a bda7975 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
language:
- nan
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_16_1
model-index:
- name: Whisper Small Taiwanese
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Taiwanese
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9011
- Cer: 50.3995
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.6
### Training results
| Training Loss | Epoch | Step | Cer | Validation Loss |
|:-------------:|:-----:|:----:|:-------:|:---------------:|
| 1.1421 | 0.4 | 1000 | 61.1639 | 1.1692 |
| 1.0556 | 0.8 | 2000 | 51.7749 | 1.0215 |
| 0.7837 | 1.2 | 3000 | 54.1978 | 0.9572 |
| 0.7332 | 1.6 | 4000 | 50.3966 | 0.9230 |
| 0.6957 | 2.0 | 5000 | 50.5772 | 0.9064 |
| 0.6211 | 2.4 | 6000 | 0.9177 | 49.8590 |
| 0.5584 | 2.8 | 7000 | 0.8962 | 47.5366 |
| 0.3952 | 3.2 | 8000 | 0.9025 | 48.2925 |
| 0.4248 | 3.6 | 9000 | 0.9011 | 50.3995 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.1.2
- Datasets 2.19.1
- Tokenizers 0.19.1
|