File size: 2,005 Bytes
527368b
 
 
 
 
 
 
 
 
 
36e155c
5362366
527368b
 
 
 
 
36e155c
527368b
bda7975
527368b
64d4e31
 
527368b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b391dc
527368b
 
6b391dc
 
527368b
 
bda7975
64d4e31
527368b
 
 
925265a
 
 
 
64d4e31
 
 
 
 
 
 
527368b
 
 
 
64d4e31
527368b
925265a
bda7975
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
language:
- nan
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_16_1
model-index:
- name: Whisper Small Taiwanese
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small Taiwanese

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9011
- Cer: 50.3995

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.6

### Training results

| Training Loss | Epoch | Step | Cer     | Validation Loss |
|:-------------:|:-----:|:----:|:-------:|:---------------:|
| 1.1421        | 0.4   | 1000 | 61.1639 | 1.1692          |
| 1.0556        | 0.8   | 2000 | 51.7749 | 1.0215          |
| 0.7837        | 1.2   | 3000 | 54.1978 | 0.9572          |
| 0.7332        | 1.6   | 4000 | 50.3966 | 0.9230          |
| 0.6957        | 2.0   | 5000 | 50.5772 | 0.9064          |
| 0.6211        | 2.4   | 6000 | 0.9177  | 49.8590         |
| 0.5584        | 2.8   | 7000 | 0.8962  | 47.5366         |
| 0.3952        | 3.2   | 8000 | 0.9025  | 48.2925         |
| 0.4248        | 3.6   | 9000 | 0.9011  | 50.3995         |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.1.2
- Datasets 2.19.1
- Tokenizers 0.19.1