--- license: creativeml-openrail-m base_model: yurman/uncond_sd2-base tags: - stable-diffusion - stable-diffusion-diffusers - diffusers inference: true --- # Unconditioned stable diffusion finetuning - yurman/uncond-sd2-base-complex This pipeline was finetuned from **yurman/uncond_sd2-base** for brain image generation. Below are some example images generated with the finetuned pipeline: ![val_imgs_grid](./val_imgs_grid.png) ## Pipeline usage You can use the pipeline like so: ```python from diffusers import StableDiffusionUnconditionalPipeline import torch pipeline = StableDiffusionUnconditionalPipeline.from_pretrained("yurman/uncond-sd2-base-complex", torch_dtype=torch.float32) image = pipeline(1).images[0] image.save("brain_image.png") ``` ## Training info These are the key hyperparameters used during training: * Epochs: 22 * Max Train Steps: 10000 * Learning rate: 5e-05 * Batch size: 18 * VAE scaling: 0.11 * VAE type: MEDVAE * Input perturbation: 0.0 * Noise offset: 0.0 * Gradient accumulation steps: 3 * Image resolution: 256 * Mixed-precision: no * Max rotation degree: 10 * Prediction Type: v_prediction * SNR Gamma: 5.0 More information on all the CLI arguments and the environment are available on your [`wandb` run page](https://wandb.ai/mri-diffusion/uncond-sd2-base-complex/runs/krp3zs5e).