--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python --- This tiny model is for debugging. It is randomly initialized with the config adapted from [Qwen/QwQ-32B](https://huggingface.co/Qwen/QwQ-32B). ### Example usage: ```python from transformers import pipeline model_id = "yujiepan/qwq-tiny-random-dim64" pipe = pipeline( "text-generation", model=model_id, device="cuda", trust_remote_code=True, max_new_tokens=3, ) print(pipe("Hello World!")) ``` ### Codes to create this repo: ```python import torch from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline, set_seed, ) source_model_id = "Qwen/QwQ-32B" save_folder = "/tmp/yujiepan/qwq-tiny-random-dim64" tokenizer = AutoTokenizer.from_pretrained( source_model_id, trust_remote_code=True, ) tokenizer.save_pretrained(save_folder) config = AutoConfig.from_pretrained( source_model_id, trust_remote_code=True, ) config._name_or_path = source_model_id config.hidden_size = 64 config.intermediate_size = 64 config.num_key_value_heads = 1 config.num_attention_heads = 2 config.num_hidden_layers = 2 config.max_window_layers = 1 model = AutoModelForCausalLM.from_config( config, torch_dtype=torch.bfloat16, trust_remote_code=True, ) model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) set_seed(42) with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.5) print(name, p.shape) model.save_pretrained(save_folder) ```