--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python --- This model is for debugging. It is randomly initialized using the config from [mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407) but with smaller size. Codes: ```python from transformers import pipeline from huggingface_hub import create_repo, upload_folder import torch import transformers import os model_id = 'mistralai/Mistral-Nemo-Instruct-2407' repo_id = 'yujiepan/mistral-nemo-2407-tiny-random' save_path = f'/tmp/{repo_id}' config = transformers.AutoConfig.from_pretrained(model_id) config.hidden_size = 8 config.intermediate_size = 32 config.num_attention_heads = 4 config.num_hidden_layers = 2 config.num_key_value_heads = 2 config.head_dim = 2 print(config) tokenizer = transformers.AutoTokenizer.from_pretrained(model_id) tokenizer.save_pretrained(save_path) model = transformers.AutoModelForCausalLM.from_config(config, torch_dtype=torch.bfloat16) model.generation_config = transformers.GenerationConfig.from_pretrained(model_id) transformers.set_seed(42) with torch.no_grad(): for _, p in sorted(model.named_parameters()): torch.nn.init.uniform_(p, -0.1, 0.1) pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, do_sample=False, device='cuda') print(pipe('Hello World!')) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] chatbot = pipeline("text-generation", model=save_path, max_length=1000, max_new_tokens=16) print(chatbot(messages)) model.save_pretrained(save_path) ```