---
license: gemma
language:
- tr
pipeline_tag: text-generation
base_model: google/gemma2-9b
tags:
- Turkish
- gemma2
- DPO
- SFT
- conversational
- instruction
---
# Turkish-Gemma-9b-v0.1
This is the Turkish-Gemma-9b-v0.1. This model is based on Gemma-2-9b, and was developed through a combination of continual pre-training, supervised fine-tuning (SFT), direct preference optimization (DPO), and model merging.
The Turkish-Gemma-9b-v0.1 is designed for Turkish text generation tasks, providing coherent, contextually relevant continuations and answers. Due to the diverse nature of the training data—which includes large-scale pre-training corpora, instruction-tuning data, and human preference data—the model may exhibit biases. Users should be aware of these and deploy the model responsibly.
You can easily demo the model here: https://cosmos.yildiz.edu.tr/cosmosgemma
The results of a voting conducted by 18 judges on 1,450 questions are as follows:
#### Transformers pipeline
```python
import transformers
import torch
model_id = "ytu-ce-cosmos/Turkish-Gemma-9b-v0.1"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "user", "content": "İsmi RD olan bir fonksiyon ona verilen sayının çarpmaya göre tersini döndürmektedir. Örneğin RD(3)=1/3. Buna göre RD(X)=X ifadesini doğru yapan kaç X değeri vardır?"}
]
outputs = pipeline(
messages,
max_new_tokens=512,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
print(outputs[0]["generated_text"][-1])
# RD(X) = X ifadesi, bir sayının çarpmaya göre tersinin kendisiyle eşit olması anlamına gelir. Yani, X ile 1/X aynı olmalıdır. Bu durum yalnızca X'in karesi 1 olduğunda gerçekleşir:
# X² = 1
# Bu denklemin çözümleri:
# X = 1 ve X = -1
# Dolayısıyla, RD(X) = X eşitliğini sağlayan *iki* X değeri vardır: *1* ve *-1*.
```
#### Transformers AutoModelForCausalLM
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "ytu-ce-cosmos/Turkish-Gemma-9b-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [
{"role": "user", "content": "İsmi RD olan bir fonksiyon ona verilen sayının çarpmaya göre tersini döndürmektedir. Örneğin RD(3)=1/3. Buna göre RD(X)=X ifadesini doğru yapan kaç X değeri vardır?"}
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=512,
do_sample=False,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
# RD(X) = X ifadesi, bir sayının çarpmaya göre tersinin kendisiyle eşit olması anlamına gelir. Yani, X ile 1/X aynı olmalıdır. Bu durum yalnızca X'in karesi 1 olduğunda gerçekleşir:
# X² = 1
# Bu denklemin çözümleri:
# X = 1 ve X = -1
# Dolayısıyla, RD(X) = X eşitliğini sağlayan *iki* X değeri vardır: *1* ve *-1*.
```
# Acknowledgments
- Thanks to the generous support from the Hugging Face team, it is possible to download models from their S3 storage 🤗
- Computing resources used in this work were provided by the National Center for High Performance Computing of Turkey (UHeM) under grant numbers 1016912023 and
1018512024
### Contact
COSMOS AI Research Group, Yildiz Technical University Computer Engineering Department
https://cosmos.yildiz.edu.tr/
cosmos@yildiz.edu.tr
---
license: gemma2
---