File size: 6,906 Bytes
4551c7a 290cc1f 4b3b2af 4551c7a 36c20e6 02496a2 36c20e6 4551c7a f084f4d 0cc1428 097139b 0cc1428 4551c7a 77499e5 4551c7a 2ed5a49 4551c7a 2ed5a49 4551c7a 77499e5 4551c7a 2ed5a49 4551c7a 2ed5a49 4551c7a 2ed5a49 4551c7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
---
license: gemma
language:
- tr
pipeline_tag: text-generation
base_model: google/gemma2-9b
tags:
- Turkish
- gemma2
- DPO
- SFT
- conversational
- instruction
---
<img src="./Turkish_Gemma.png"/>
# Turkish-Gemma-9b-v0.1
This is the Turkish-Gemma-9b-v0.1. This model is based on Gemma-2-9b, and was developed through a combination of continual pre-training, supervised fine-tuning (SFT), direct preference optimization (DPO), and model merging.
The Turkish-Gemma-9b-v0.1 is designed for Turkish text generation tasks, providing coherent, contextually relevant continuations and answers. Due to the diverse nature of the training data—which includes large-scale pre-training corpora, instruction-tuning data, and human preference data—the model may exhibit biases. Users should be aware of these and deploy the model responsibly.
You can easily demo the model here: https://cosmos.yildiz.edu.tr/cosmosgemma
To evaluate model performance, we compiled a dataset of 1,450 carefully designed questions across diverse categories. Each question was reviewed and rated by 18 human annotators, allowing for a reliable comparison across multiple models.
The table below summarizes the evaluation results:
### 🏆 Model Comparison: Win Rates
| Model Name | Win Rate |
|---------------------------------------------|-----------------|
| Qwen/Qwen3-30B-A3B | 62.39% |
| gpt-4o-mini | 62.12% |
| google/gemma-3-12b-it | 61.61% |
| google/gemma-2-27b-it | 57.91% |
| **ytu-ce-cosmos/Turkish-Gemma-9b-v0.1** | **57.30%** |
| google/gemma-2-9b-it | 54.13% |
| ytu-ce-cosmos/Turkish-Llama-8b-DPO-v0.1 | 36.89% |
### Voting Metodology
A question and two answers from different models were presented to human judges. The judges selected the better answer based on their preferences. For example, in the question below, the judge selected the answer on the right:

### 📊 Turkish Evaluation Benchmark Results (via `malhajar17/lm-evaluation-harness_turkish`)
| Model Name | Average | MMLU | Truthful_QA | ARC | Hellaswag | Gsm8K | Winogrande |
|---------------------------------------------|---------|-------|--------------|-------|-----------|-------|------------|
| Qwen/Qwen2.5-72B-Instruct | 67.69 | 77.28 | 59.86 | 61.52 | 61.98 | 83.6 | 61.92 |
| google/gemma-3-27b-it | 67.36 | 70.2 | 57.06 | 66.98 | 66.58 | 77.52 | 65.8 |
| google/gemma-2-27b-it | 65.57 | 66.49 | 57.45 | 63.65 | 63.86 | 76.54 | 65.4 |
| meta-llama/Llama-3-1-70B-Instruct | 63.92 | 74.00 | 51.41 | 59.64 | 64.31 | 66.13 | 66.90 |
| Qwen/Qwen2.5-32B-Instruct | 63.74 | 70.93 | 57.87 | 57.00 | 57.04 | 77.83 | 61.77 |
| **ytu-ce-cosmos/Turkish-Gemma-9b-v0.1** | **63.31** | **63.85** | **54.21** | **59.64** | **64.19** | **73.42** | **64.53** |
| google/gemma-3-12b-it | 62.94 | 63.92 | 57.16 | 60.67 | 62.00 | 72.06 | 61.77 |
| Qwen/Qwen2.5-14B-it | 60.34 | 65.28 | 59.00 | 50.00 | 52.22 | 76.77 | 58.77 |
| google/gemma-2-9b-it | 59.14 | 61.07 | 55.77 | 56.31 | 56.48 | 63.10 | 62.09 |
| ytu-ce-cosmos/Turkish-Llama-8b-DPO-v0.1 | 55.03 | 51.97 | 57.56 | 51.02 | 52.96 | 59.87 | 57.77 |
| Qwen/Qwen2.5-7B-Instruct | 53.42 | 56.31 | 55.99 | 42.06 | 44.71 | 64.16 | 59.66 |
#### Transformers pipeline
```python
import transformers
import torch
model_id = "ytu-ce-cosmos/Turkish-Gemma-9b-v0.1"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "user", "content": "İsmi RD olan bir fonksiyon ona verilen sayının çarpmaya göre tersini döndürmektedir. Örneğin RD(3)=1/3. Buna göre RD(X)=X ifadesini doğru yapan kaç X değeri vardır?"}
]
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<end_of_turn>")
]
outputs = pipeline(
messages,
max_new_tokens=512,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
print(outputs[0]["generated_text"][-1])
# RD(X) = X ifadesi, bir sayının çarpmaya göre tersinin kendisiyle eşit olması anlamına gelir. Yani, X ile 1/X aynı olmalıdır. Bu durum yalnızca X'in karesi 1 olduğunda gerçekleşir:
# X² = 1
# Bu denklemin çözümleri:
# X = 1 ve X = -1
# Dolayısıyla, RD(X) = X eşitliğini sağlayan *iki* X değeri vardır: *1* ve *-1*.
```
#### Transformers AutoModelForCausalLM
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "ytu-ce-cosmos/Turkish-Gemma-9b-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [
{"role": "user", "content": "İsmi RD olan bir fonksiyon ona verilen sayının çarpmaya göre tersini döndürmektedir. Örneğin RD(3)=1/3. Buna göre RD(X)=X ifadesini doğru yapan kaç X değeri vardır?"}
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<end_of_turn>")
]
outputs = model.generate(
input_ids,
max_new_tokens=512,
eos_token_id=terminators,
do_sample=False,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
# RD(X) = X ifadesi, bir sayının çarpmaya göre tersinin kendisiyle eşit olması anlamına gelir. Yani, X ile 1/X aynı olmalıdır. Bu durum yalnızca X'in karesi 1 olduğunda gerçekleşir:
# X² = 1
# Bu denklemin çözümleri:
# X = 1 ve X = -1
# Dolayısıyla, RD(X) = X eşitliğini sağlayan *iki* X değeri vardır: *1* ve *-1*.
```
# Acknowledgments
- Thanks to the generous support from the Hugging Face team, it is possible to download models from their S3 storage 🤗
- Computing resources used in this work were provided by the National Center for High Performance Computing of Turkey (UHeM) under grant numbers 1016912023 and
1018512024
### Contact
COSMOS AI Research Group, Yildiz Technical University Computer Engineering Department <br>
https://cosmos.yildiz.edu.tr/ <br>
[email protected]
---
license: gemma2
--- |