File size: 2,182 Bytes
edf4ce8 b8f08a1 edf4ce8 b8f08a1 edf4ce8 5ec53bc b8f08a1 edf4ce8 33506bb b8f08a1 edf4ce8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
library_name: transformers
license: mit
base_model: FacebookAI/roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: roberta-Validation-goodareas-eval_FeedbackESConv5pp_CARE10pp-sweeps-current
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-Validation-goodareas-eval_FeedbackESConv5pp_CARE10pp-sweeps-current
This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3698
- Accuracy: 0.8216
- Precision: 0.4348
- Recall: 0.5932
- F1: 0.5018
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.6142257525574262e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.4927 | 1.0 | 296 | 0.2877 | 0.8434 | 0.4792 | 0.3898 | 0.4299 |
| 0.3855 | 2.0 | 592 | 0.2566 | 0.8665 | 0.5714 | 0.4746 | 0.5185 |
| 0.3257 | 3.0 | 888 | 0.2534 | 0.8575 | 0.5368 | 0.4322 | 0.4789 |
| 0.2553 | 4.0 | 1184 | 0.3290 | 0.8216 | 0.4371 | 0.6186 | 0.5123 |
| 0.1911 | 5.0 | 1480 | 0.3698 | 0.8216 | 0.4348 | 0.5932 | 0.5018 |
### Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 2.21.0
- Tokenizers 0.21.0
|