Upload 2 files
Browse files- model.py +278 -21
- pinyin.txt +408 -0
model.py
CHANGED
@@ -1,11 +1,234 @@
|
|
1 |
-
from transformers import
|
2 |
-
from abc import ABC, abstractmethod
|
3 |
-
from typing import Type
|
4 |
import torch
|
5 |
-
import torch.nn.functional as F
|
6 |
from modules.file import ExcelFileWriter
|
7 |
import os
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
script_dir = os.path.dirname(os.path.abspath(__file__))
|
10 |
parent_dir = os.path.dirname(os.path.dirname(os.path.dirname(script_dir)))
|
11 |
|
@@ -17,6 +240,7 @@ class Model():
|
|
17 |
Args:
|
18 |
gpu_info (list): 包含 GPU 名称的列表
|
19 |
target_gpu_name (str): 目标 GPU 的名称
|
|
|
20 |
Returns:
|
21 |
int: 目标 GPU 的索引,如果未找到则返回 -1
|
22 |
"""
|
@@ -37,6 +261,8 @@ class Model():
|
|
37 |
# self.translator = pipeline('translation', model=self.original_model, tokenizer=self.tokenizer, src_lang=original_language, tgt_lang=target_language, device=device)
|
38 |
|
39 |
def generate(self, inputs, original_language, target_languages, max_batch_size):
|
|
|
|
|
40 |
def language_mapping(original_language):
|
41 |
d = {
|
42 |
"Achinese (Arabic script)": "ace_Arab",
|
@@ -139,7 +365,8 @@ class Model():
|
|
139 |
"Ukrainian": "ukr_Cyrl",
|
140 |
"Urdu": "urd_Arab",
|
141 |
"Vietnamese": "vie_Latn",
|
142 |
-
"Thai":"tha_Thai"
|
|
|
143 |
}
|
144 |
return d[original_language]
|
145 |
def process_gpu_translate_result(temp_outputs):
|
@@ -199,22 +426,43 @@ class Model():
|
|
199 |
processed_num = 0
|
200 |
for index, batch in enumerate(batches):
|
201 |
# Tokenize input
|
202 |
-
|
|
|
|
|
|
|
|
|
203 |
temp = []
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
temp_outputs.append(temp)
|
219 |
processed_num += len(batch)
|
220 |
if (index + 1) * max_batch_size // 1000 - index * max_batch_size // 1000 == 1:
|
@@ -231,4 +479,13 @@ class Model():
|
|
231 |
"generated_translation": trans['generated_translation'][i],
|
232 |
})
|
233 |
outputs.append(temp)
|
234 |
-
return outputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
|
|
|
|
2 |
import torch
|
|
|
3 |
from modules.file import ExcelFileWriter
|
4 |
import os
|
5 |
|
6 |
+
from abc import ABC, abstractmethod
|
7 |
+
from typing import List
|
8 |
+
import re
|
9 |
+
|
10 |
+
class FilterPipeline():
|
11 |
+
def __init__(self, filter_list):
|
12 |
+
self._filter_list:List[Filter] = filter_list
|
13 |
+
|
14 |
+
def append(self, filter):
|
15 |
+
self._filter_list.append(filter)
|
16 |
+
|
17 |
+
def batch_encoder(self, inputs):
|
18 |
+
for filter in self._filter_list:
|
19 |
+
inputs = filter.encoder(inputs)
|
20 |
+
return inputs
|
21 |
+
|
22 |
+
def batch_decoder(self, inputs):
|
23 |
+
for filter in reversed(self._filter_list):
|
24 |
+
inputs = filter.decoder(inputs)
|
25 |
+
return inputs
|
26 |
+
|
27 |
+
class Filter(ABC):
|
28 |
+
def __init__(self):
|
29 |
+
self.name = 'filter'
|
30 |
+
self.code = []
|
31 |
+
@abstractmethod
|
32 |
+
def encoder(self, inputs):
|
33 |
+
pass
|
34 |
+
|
35 |
+
@abstractmethod
|
36 |
+
def decoder(self, inputs):
|
37 |
+
pass
|
38 |
+
|
39 |
+
class SpecialTokenFilter(Filter):
|
40 |
+
def __init__(self):
|
41 |
+
self.name = 'special token filter'
|
42 |
+
self.code = []
|
43 |
+
self.special_tokens = ['!', '!', '-']
|
44 |
+
|
45 |
+
def encoder(self, inputs):
|
46 |
+
filtered_inputs = []
|
47 |
+
self.code = []
|
48 |
+
for i, input_str in enumerate(inputs):
|
49 |
+
if not all(char in self.special_tokens for char in input_str):
|
50 |
+
filtered_inputs.append(input_str)
|
51 |
+
else:
|
52 |
+
self.code.append([i, input_str])
|
53 |
+
return filtered_inputs
|
54 |
+
|
55 |
+
def decoder(self, inputs):
|
56 |
+
original_inputs = inputs.copy()
|
57 |
+
for removed_indice in self.code:
|
58 |
+
original_inputs.insert(removed_indice[0], removed_indice[1])
|
59 |
+
return original_inputs
|
60 |
+
|
61 |
+
class SperSignFilter(Filter):
|
62 |
+
def __init__(self):
|
63 |
+
self.name = 's percentage sign filter'
|
64 |
+
self.code = []
|
65 |
+
|
66 |
+
def encoder(self, inputs):
|
67 |
+
encoded_inputs = []
|
68 |
+
self.code = [] # 清空 self.code
|
69 |
+
for i, input_str in enumerate(inputs):
|
70 |
+
if '%s' in input_str:
|
71 |
+
encoded_str = input_str.replace('%s', '*')
|
72 |
+
self.code.append(i) # 将包含 '%s' 的字符串的索引存储到 self.code 中
|
73 |
+
else:
|
74 |
+
encoded_str = input_str
|
75 |
+
encoded_inputs.append(encoded_str)
|
76 |
+
return encoded_inputs
|
77 |
+
|
78 |
+
def decoder(self, inputs):
|
79 |
+
decoded_inputs = inputs.copy()
|
80 |
+
for i in self.code:
|
81 |
+
decoded_inputs[i] = decoded_inputs[i].replace('*', '%s') # 使用 self.code 中的索引还原原始字符串
|
82 |
+
return decoded_inputs
|
83 |
+
|
84 |
+
class ParenSParenFilter(Filter):
|
85 |
+
def __init__(self):
|
86 |
+
self.name = 'Paren s paren filter'
|
87 |
+
self.code = []
|
88 |
+
|
89 |
+
def encoder(self, inputs):
|
90 |
+
encoded_inputs = []
|
91 |
+
self.code = [] # 清空 self.code
|
92 |
+
for i, input_str in enumerate(inputs):
|
93 |
+
if '(s)' in input_str:
|
94 |
+
encoded_str = input_str.replace('(s)', '$')
|
95 |
+
self.code.append(i) # 将包含 '(s)' 的字符串的索引存储到 self.code 中
|
96 |
+
else:
|
97 |
+
encoded_str = input_str
|
98 |
+
encoded_inputs.append(encoded_str)
|
99 |
+
return encoded_inputs
|
100 |
+
|
101 |
+
def decoder(self, inputs):
|
102 |
+
decoded_inputs = inputs.copy()
|
103 |
+
for i in self.code:
|
104 |
+
decoded_inputs[i] = decoded_inputs[i].replace('$', '(s)') # 使用 self.code 中的索引还原原始字符串
|
105 |
+
return decoded_inputs
|
106 |
+
|
107 |
+
class ChevronsFilter(Filter):
|
108 |
+
def __init__(self):
|
109 |
+
self.name = 'chevrons filter'
|
110 |
+
self.code = []
|
111 |
+
|
112 |
+
def encoder(self, inputs):
|
113 |
+
encoded_inputs = []
|
114 |
+
self.code = [] # 清空 self.code
|
115 |
+
pattern = re.compile(r'<.*?>')
|
116 |
+
for i, input_str in enumerate(inputs):
|
117 |
+
if pattern.search(input_str):
|
118 |
+
matches = pattern.findall(input_str)
|
119 |
+
encoded_str = pattern.sub('#', input_str)
|
120 |
+
self.code.append((i, matches)) # 将包含匹配模式的字符串的索引和匹配列表存储到 self.code 中
|
121 |
+
else:
|
122 |
+
encoded_str = input_str
|
123 |
+
encoded_inputs.append(encoded_str)
|
124 |
+
return encoded_inputs
|
125 |
+
|
126 |
+
def decoder(self, inputs):
|
127 |
+
decoded_inputs = inputs.copy()
|
128 |
+
for i, matches in self.code:
|
129 |
+
for match in matches:
|
130 |
+
decoded_inputs[i] = decoded_inputs[i].replace('#', match, 1) # 使用 self.code 中的匹配列表依次还原原始字符串
|
131 |
+
return decoded_inputs
|
132 |
+
|
133 |
+
class SimilarFilter(Filter):
|
134 |
+
def __init__(self):
|
135 |
+
self.name = 'similar filter'
|
136 |
+
self.code = []
|
137 |
+
|
138 |
+
def is_similar(self, str1, str2):
|
139 |
+
# 判断两个字符串是否相似(只有数字上有区别)
|
140 |
+
pattern = re.compile(r'\d+')
|
141 |
+
return pattern.sub('', str1) == pattern.sub('', str2)
|
142 |
+
|
143 |
+
def encoder(self, inputs):
|
144 |
+
encoded_inputs = []
|
145 |
+
self.code = [] # 清空 self.code
|
146 |
+
i = 0
|
147 |
+
while i < len(inputs):
|
148 |
+
encoded_inputs.append(inputs[i])
|
149 |
+
similar_strs = [inputs[i]]
|
150 |
+
j = i + 1
|
151 |
+
while j < len(inputs) and self.is_similar(inputs[i], inputs[j]):
|
152 |
+
similar_strs.append(inputs[j])
|
153 |
+
j += 1
|
154 |
+
if len(similar_strs) > 1:
|
155 |
+
self.code.append((i, similar_strs)) # 将相似字符串的起始索引和实际字符串列表存储到 self.code 中
|
156 |
+
i = j
|
157 |
+
return encoded_inputs
|
158 |
+
|
159 |
+
def decoder(self, inputs:List):
|
160 |
+
decoded_inputs = inputs
|
161 |
+
for i, similar_strs in self.code:
|
162 |
+
pattern = re.compile(r'\d+')
|
163 |
+
for j in range(len(similar_strs)):
|
164 |
+
if pattern.search(similar_strs[j]):
|
165 |
+
number = re.findall(r'\d+', similar_strs[j])[0] # 获取相似字符串的数字部分
|
166 |
+
new_str = pattern.sub(number, inputs[i]) # 将新字符串的数字部分替换为相似字符串的数字部分
|
167 |
+
else:
|
168 |
+
new_str = inputs[i] # 如果相似字符串不含数字,直接使用新字符串
|
169 |
+
if j > 0:
|
170 |
+
decoded_inputs.insert(i+j, new_str)
|
171 |
+
return decoded_inputs
|
172 |
+
|
173 |
+
class ChineseFilter:
|
174 |
+
def __init__(self, pinyin_lib_file='pinyin.txt'):
|
175 |
+
self.name = 'chinese filter'
|
176 |
+
self.code = []
|
177 |
+
self.pinyin_lib = self.load_pinyin_lib(pinyin_lib_file)
|
178 |
+
|
179 |
+
def load_pinyin_lib(self, file_path):
|
180 |
+
with open(os.path.join(script_dir,file_path), 'r', encoding='utf-8') as f:
|
181 |
+
return set(line.strip().lower() for line in f)
|
182 |
+
|
183 |
+
def is_valid_chinese(self, word):
|
184 |
+
# 判断一个单词是否符合要求:只有一个单词构成,并且首字母大写
|
185 |
+
if len(word.split()) == 1 and word[0].isupper():
|
186 |
+
# 使用pinyin_or_word函数判断是否是合法的拼音
|
187 |
+
return self.is_pinyin(word.lower())
|
188 |
+
return False
|
189 |
+
|
190 |
+
def encoder(self, inputs):
|
191 |
+
encoded_inputs = []
|
192 |
+
self.code = [] # 清空 self.code
|
193 |
+
for i, word in enumerate(inputs):
|
194 |
+
if self.is_valid_chinese(word):
|
195 |
+
self.code.append((i, word)) # 将需要过滤的中文单词的索引和拼音存储到 self.code 中
|
196 |
+
else:
|
197 |
+
encoded_inputs.append(word)
|
198 |
+
return encoded_inputs
|
199 |
+
|
200 |
+
def decoder(self, inputs):
|
201 |
+
decoded_inputs = inputs.copy()
|
202 |
+
for i, word in self.code:
|
203 |
+
decoded_inputs.insert(i, word) # 根据索引将过滤的中文单词还原到原位置
|
204 |
+
return decoded_inputs
|
205 |
+
|
206 |
+
def is_pinyin(self, string):
|
207 |
+
'''
|
208 |
+
judge a string is a pinyin or a english word.
|
209 |
+
pinyin_Lib comes from a txt file.
|
210 |
+
'''
|
211 |
+
string = string.lower()
|
212 |
+
stringlen = len(string)
|
213 |
+
max_len = 6
|
214 |
+
result = []
|
215 |
+
n = 0
|
216 |
+
while n < stringlen:
|
217 |
+
matched = 0
|
218 |
+
temp_result = []
|
219 |
+
for i in range(max_len, 0, -1):
|
220 |
+
s = string[0:i]
|
221 |
+
if s in self.pinyin_lib:
|
222 |
+
temp_result.append(string[:i])
|
223 |
+
matched = i
|
224 |
+
break
|
225 |
+
if i == 1 and len(temp_result) == 0:
|
226 |
+
return False
|
227 |
+
result.extend(temp_result)
|
228 |
+
string = string[matched:]
|
229 |
+
n += matched
|
230 |
+
return True
|
231 |
+
|
232 |
script_dir = os.path.dirname(os.path.abspath(__file__))
|
233 |
parent_dir = os.path.dirname(os.path.dirname(os.path.dirname(script_dir)))
|
234 |
|
|
|
240 |
Args:
|
241 |
gpu_info (list): 包含 GPU 名称的列表
|
242 |
target_gpu_name (str): 目标 GPU 的名称
|
243 |
+
|
244 |
Returns:
|
245 |
int: 目标 GPU 的索引,如果未找到则返回 -1
|
246 |
"""
|
|
|
261 |
# self.translator = pipeline('translation', model=self.original_model, tokenizer=self.tokenizer, src_lang=original_language, tgt_lang=target_language, device=device)
|
262 |
|
263 |
def generate(self, inputs, original_language, target_languages, max_batch_size):
|
264 |
+
filter_list = [SpecialTokenFilter(), SperSignFilter(), ParenSParenFilter(), ChevronsFilter(), SimilarFilter(), ChineseFilter()]
|
265 |
+
filter_pipeline = FilterPipeline(filter_list)
|
266 |
def language_mapping(original_language):
|
267 |
d = {
|
268 |
"Achinese (Arabic script)": "ace_Arab",
|
|
|
365 |
"Ukrainian": "ukr_Cyrl",
|
366 |
"Urdu": "urd_Arab",
|
367 |
"Vietnamese": "vie_Latn",
|
368 |
+
"Thai":"tha_Thai",
|
369 |
+
"Khmer":"khm_Khmr"
|
370 |
}
|
371 |
return d[original_language]
|
372 |
def process_gpu_translate_result(temp_outputs):
|
|
|
426 |
processed_num = 0
|
427 |
for index, batch in enumerate(batches):
|
428 |
# Tokenize input
|
429 |
+
print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>")
|
430 |
+
print(len(batch))
|
431 |
+
print(batch)
|
432 |
+
batch = filter_pipeline.batch_encoder(batch)
|
433 |
+
print(batch)
|
434 |
temp = []
|
435 |
+
if len(batch) > 0:
|
436 |
+
input_ids = self.tokenizer(batch, return_tensors="pt", padding=True).to(self.device_name)
|
437 |
+
for target_language in target_languages:
|
438 |
+
target_lang_code = self.tokenizer.lang_code_to_id[language_mapping(target_language)]
|
439 |
+
generated_tokens = self.model.generate(
|
440 |
+
**input_ids,
|
441 |
+
forced_bos_token_id=target_lang_code,
|
442 |
+
)
|
443 |
+
generated_translation = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
444 |
+
|
445 |
+
print(generated_translation)
|
446 |
+
generated_translation = filter_pipeline.batch_decoder(generated_translation)
|
447 |
+
print(generated_translation)
|
448 |
+
print(len(generated_translation))
|
449 |
+
# Append result to output
|
450 |
+
temp.append({
|
451 |
+
"target_language": target_language,
|
452 |
+
"generated_translation": generated_translation,
|
453 |
+
})
|
454 |
+
input_ids.to('cpu')
|
455 |
+
del input_ids
|
456 |
+
else:
|
457 |
+
for target_language in target_languages:
|
458 |
+
generated_translation = filter_pipeline.batch_decoder(batch)
|
459 |
+
print(generated_translation)
|
460 |
+
print(len(generated_translation))
|
461 |
+
# Append result to output
|
462 |
+
temp.append({
|
463 |
+
"target_language": target_language,
|
464 |
+
"generated_translation": generated_translation,
|
465 |
+
})
|
466 |
temp_outputs.append(temp)
|
467 |
processed_num += len(batch)
|
468 |
if (index + 1) * max_batch_size // 1000 - index * max_batch_size // 1000 == 1:
|
|
|
479 |
"generated_translation": trans['generated_translation'][i],
|
480 |
})
|
481 |
outputs.append(temp)
|
482 |
+
return outputs
|
483 |
+
for filter in self._filter_list:
|
484 |
+
inputs = filter.encoder(inputs)
|
485 |
+
return inputs
|
486 |
+
|
487 |
+
def batch_decoder(self, inputs):
|
488 |
+
for filter in reversed(self._filter_list):
|
489 |
+
inputs = filter.decoder(inputs)
|
490 |
+
return inputs
|
491 |
+
|
pinyin.txt
ADDED
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
a
|
2 |
+
ai
|
3 |
+
an
|
4 |
+
ang
|
5 |
+
ao
|
6 |
+
ba
|
7 |
+
bai
|
8 |
+
ban
|
9 |
+
bang
|
10 |
+
bao
|
11 |
+
bei
|
12 |
+
ben
|
13 |
+
beng
|
14 |
+
bi
|
15 |
+
bian
|
16 |
+
biao
|
17 |
+
bie
|
18 |
+
bin
|
19 |
+
bing
|
20 |
+
bo
|
21 |
+
bu
|
22 |
+
ca
|
23 |
+
cai
|
24 |
+
can
|
25 |
+
cang
|
26 |
+
cao
|
27 |
+
ce
|
28 |
+
cen
|
29 |
+
ceng
|
30 |
+
cha
|
31 |
+
chai
|
32 |
+
chan
|
33 |
+
chang
|
34 |
+
chao
|
35 |
+
che
|
36 |
+
chen
|
37 |
+
cheng
|
38 |
+
chi
|
39 |
+
chong
|
40 |
+
chou
|
41 |
+
chu
|
42 |
+
chua
|
43 |
+
chuai
|
44 |
+
chuan
|
45 |
+
chuang
|
46 |
+
chui
|
47 |
+
chun
|
48 |
+
chuo
|
49 |
+
ci
|
50 |
+
cong
|
51 |
+
cou
|
52 |
+
cu
|
53 |
+
cuan
|
54 |
+
cui
|
55 |
+
cun
|
56 |
+
cuo
|
57 |
+
da
|
58 |
+
dai
|
59 |
+
dan
|
60 |
+
dang
|
61 |
+
dao
|
62 |
+
de
|
63 |
+
dei
|
64 |
+
den
|
65 |
+
deng
|
66 |
+
di
|
67 |
+
dia
|
68 |
+
dian
|
69 |
+
diao
|
70 |
+
die
|
71 |
+
ding
|
72 |
+
diu
|
73 |
+
dong
|
74 |
+
dou
|
75 |
+
du
|
76 |
+
duan
|
77 |
+
dui
|
78 |
+
dun
|
79 |
+
duo
|
80 |
+
e
|
81 |
+
ei
|
82 |
+
en
|
83 |
+
eng
|
84 |
+
er
|
85 |
+
fa
|
86 |
+
fan
|
87 |
+
fang
|
88 |
+
fei
|
89 |
+
fen
|
90 |
+
feng
|
91 |
+
fo
|
92 |
+
fou
|
93 |
+
fu
|
94 |
+
ga
|
95 |
+
gai
|
96 |
+
gan
|
97 |
+
gang
|
98 |
+
gao
|
99 |
+
ge
|
100 |
+
gei
|
101 |
+
gen
|
102 |
+
geng
|
103 |
+
gong
|
104 |
+
gou
|
105 |
+
gu
|
106 |
+
gua
|
107 |
+
guai
|
108 |
+
guan
|
109 |
+
guang
|
110 |
+
gui
|
111 |
+
gun
|
112 |
+
guo
|
113 |
+
ha
|
114 |
+
hai
|
115 |
+
han
|
116 |
+
hang
|
117 |
+
hao
|
118 |
+
he
|
119 |
+
hei
|
120 |
+
hen
|
121 |
+
heng
|
122 |
+
hong
|
123 |
+
hou
|
124 |
+
hu
|
125 |
+
hua
|
126 |
+
huai
|
127 |
+
huan
|
128 |
+
huang
|
129 |
+
hui
|
130 |
+
hun
|
131 |
+
huo
|
132 |
+
ji
|
133 |
+
jia
|
134 |
+
jian
|
135 |
+
jiang
|
136 |
+
jiao
|
137 |
+
jie
|
138 |
+
jin
|
139 |
+
jing
|
140 |
+
jiong
|
141 |
+
jiu
|
142 |
+
ju
|
143 |
+
juan
|
144 |
+
jue
|
145 |
+
jun
|
146 |
+
ka
|
147 |
+
kai
|
148 |
+
kan
|
149 |
+
kang
|
150 |
+
kao
|
151 |
+
ke
|
152 |
+
ken
|
153 |
+
keng
|
154 |
+
kong
|
155 |
+
kou
|
156 |
+
ku
|
157 |
+
kua
|
158 |
+
kuai
|
159 |
+
kuan
|
160 |
+
kuang
|
161 |
+
kui
|
162 |
+
kun
|
163 |
+
kuo
|
164 |
+
la
|
165 |
+
lai
|
166 |
+
lan
|
167 |
+
lang
|
168 |
+
lao
|
169 |
+
le
|
170 |
+
lei
|
171 |
+
leng
|
172 |
+
li
|
173 |
+
lia
|
174 |
+
lian
|
175 |
+
liang
|
176 |
+
liao
|
177 |
+
lie
|
178 |
+
lin
|
179 |
+
ling
|
180 |
+
liu
|
181 |
+
long
|
182 |
+
lou
|
183 |
+
lu
|
184 |
+
luan
|
185 |
+
lü
|
186 |
+
lüe
|
187 |
+
lun
|
188 |
+
luo
|
189 |
+
ma
|
190 |
+
mai
|
191 |
+
man
|
192 |
+
mang
|
193 |
+
mao
|
194 |
+
me
|
195 |
+
mei
|
196 |
+
men
|
197 |
+
meng
|
198 |
+
mi
|
199 |
+
mian
|
200 |
+
miao
|
201 |
+
mie
|
202 |
+
min
|
203 |
+
ming
|
204 |
+
miu
|
205 |
+
mo
|
206 |
+
mou
|
207 |
+
mu
|
208 |
+
na
|
209 |
+
nai
|
210 |
+
nan
|
211 |
+
nang
|
212 |
+
nao
|
213 |
+
ne
|
214 |
+
nei
|
215 |
+
nen
|
216 |
+
neng
|
217 |
+
ni
|
218 |
+
nian
|
219 |
+
niang
|
220 |
+
niao
|
221 |
+
nie
|
222 |
+
nin
|
223 |
+
ning
|
224 |
+
niu
|
225 |
+
nong
|
226 |
+
nou
|
227 |
+
nu
|
228 |
+
nü
|
229 |
+
nuan
|
230 |
+
nüe
|
231 |
+
nuo
|
232 |
+
nun
|
233 |
+
o
|
234 |
+
ou
|
235 |
+
pa
|
236 |
+
pai
|
237 |
+
pan
|
238 |
+
pang
|
239 |
+
pao
|
240 |
+
pei
|
241 |
+
pen
|
242 |
+
peng
|
243 |
+
pi
|
244 |
+
pian
|
245 |
+
piao
|
246 |
+
pie
|
247 |
+
pin
|
248 |
+
ping
|
249 |
+
po
|
250 |
+
pou
|
251 |
+
pu
|
252 |
+
qi
|
253 |
+
qia
|
254 |
+
qian
|
255 |
+
qiang
|
256 |
+
qiao
|
257 |
+
qie
|
258 |
+
qin
|
259 |
+
qing
|
260 |
+
qiong
|
261 |
+
qiu
|
262 |
+
qu
|
263 |
+
quan
|
264 |
+
que
|
265 |
+
qun
|
266 |
+
ran
|
267 |
+
rang
|
268 |
+
rao
|
269 |
+
re
|
270 |
+
ren
|
271 |
+
reng
|
272 |
+
ri
|
273 |
+
rong
|
274 |
+
rou
|
275 |
+
ru
|
276 |
+
ruan
|
277 |
+
rui
|
278 |
+
run
|
279 |
+
ruo
|
280 |
+
sa
|
281 |
+
sai
|
282 |
+
san
|
283 |
+
sang
|
284 |
+
sao
|
285 |
+
se
|
286 |
+
sen
|
287 |
+
seng
|
288 |
+
sha
|
289 |
+
shai
|
290 |
+
shan
|
291 |
+
shang
|
292 |
+
shao
|
293 |
+
she
|
294 |
+
shei
|
295 |
+
shen
|
296 |
+
sheng
|
297 |
+
shi
|
298 |
+
shou
|
299 |
+
shu
|
300 |
+
shua
|
301 |
+
shuai
|
302 |
+
shuan
|
303 |
+
shuang
|
304 |
+
shui
|
305 |
+
shun
|
306 |
+
shuo
|
307 |
+
si
|
308 |
+
song
|
309 |
+
sou
|
310 |
+
su
|
311 |
+
suan
|
312 |
+
sui
|
313 |
+
sun
|
314 |
+
suo
|
315 |
+
ta
|
316 |
+
tai
|
317 |
+
tan
|
318 |
+
tang
|
319 |
+
tao
|
320 |
+
te
|
321 |
+
teng
|
322 |
+
ti
|
323 |
+
tian
|
324 |
+
tiao
|
325 |
+
tie
|
326 |
+
ting
|
327 |
+
tong
|
328 |
+
tou
|
329 |
+
tu
|
330 |
+
tuan
|
331 |
+
tui
|
332 |
+
tun
|
333 |
+
tuo
|
334 |
+
wa
|
335 |
+
wai
|
336 |
+
wan
|
337 |
+
wang
|
338 |
+
wei
|
339 |
+
wen
|
340 |
+
weng
|
341 |
+
wo
|
342 |
+
wu
|
343 |
+
xi
|
344 |
+
xia
|
345 |
+
xian
|
346 |
+
xiang
|
347 |
+
xiao
|
348 |
+
xie
|
349 |
+
xin
|
350 |
+
xing
|
351 |
+
xiong
|
352 |
+
xiu
|
353 |
+
xu
|
354 |
+
xuan
|
355 |
+
xue
|
356 |
+
xun
|
357 |
+
ya
|
358 |
+
yan
|
359 |
+
yang
|
360 |
+
yao
|
361 |
+
ye
|
362 |
+
yi
|
363 |
+
yin
|
364 |
+
ying
|
365 |
+
yo
|
366 |
+
yong
|
367 |
+
you
|
368 |
+
yu
|
369 |
+
yuan
|
370 |
+
yue
|
371 |
+
yun
|
372 |
+
za
|
373 |
+
zai
|
374 |
+
zan
|
375 |
+
zang
|
376 |
+
zao
|
377 |
+
ze
|
378 |
+
zei
|
379 |
+
zen
|
380 |
+
zeng
|
381 |
+
zha
|
382 |
+
zhai
|
383 |
+
zhan
|
384 |
+
zhang
|
385 |
+
zhao
|
386 |
+
zhe
|
387 |
+
zhei
|
388 |
+
zhen
|
389 |
+
zheng
|
390 |
+
zhi
|
391 |
+
zhong
|
392 |
+
zhou
|
393 |
+
zhu
|
394 |
+
zhua
|
395 |
+
zhuai
|
396 |
+
zhuan
|
397 |
+
zhuang
|
398 |
+
zhui
|
399 |
+
zhun
|
400 |
+
zhuo
|
401 |
+
zi
|
402 |
+
zong
|
403 |
+
zou
|
404 |
+
zu
|
405 |
+
zuan
|
406 |
+
zui
|
407 |
+
zun
|
408 |
+
zuo
|