File size: 9,726 Bytes
42f387c
 
 
 
 
 
 
 
 
 
f809b74
42f387c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a0e89e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42f387c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f809b74
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
---
license: mit
base_model: mattmdjaga/segformer_b2_clothes
tags:
- generated_from_trainer
datasets:
- human_parsing_29_mix
model-index:
- name: segformer-b2-human-parse-24
  results: []
pipeline_tag: image-segmentation
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b2-human-parse-24
This model is a fine-tuned version of [mattmdjaga/segformer_b2_clothes](https://huggingface.co/mattmdjaga/segformer_b2_clothes) on the human_parsing_29_mix dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0818
- Mean Iou: 0.6023
- Mean Accuracy: 0.6321
- Overall Accuracy: 0.9780
- Accuracy Background: 0.9969
- Accuracy Hat: nan
- Accuracy Hair: 0.9646
- Accuracy Glove: 0.0
- Accuracy Glasses: 0.0
- Accuracy Upper Only Torso Region: 0.9747
- Accuracy Dresses Only Torso Region: 0.4939
- Accuracy Coat Only Torso Region: 0.0039
- Accuracy Socks: 0.0
- Accuracy Left Pants: 0.9604
- Accuracy Right Patns: 0.9646
- Accuracy Skin Around Neck Region: 0.9585
- Accuracy Scarf: nan
- Accuracy Skirts: 0.8904
- Accuracy Face: 0.9796
- Accuracy Left Arm: 0.9703
- Accuracy Right Arm: 0.9700
- Accuracy Left Leg: 0.9267
- Accuracy Right Leg: 0.9297
- Accuracy Left Shoe: 0.0
- Accuracy Right Shoe: 0.0
- Accuracy Left Sleeve For Upper: 0.9462
- Accuracy Right Sleeve For Upper: 0.9517
- Accuracy Bag: 0.0234
- Iou Background: 0.9941
- Iou Hat: nan
- Iou Hair: 0.9268
- Iou Glove: 0.0
- Iou Glasses: 0.0
- Iou Upper Only Torso Region: 0.9351
- Iou Dresses Only Torso Region: 0.4059
- Iou Coat Only Torso Region: 0.0035
- Iou Socks: 0.0
- Iou Left Pants: 0.9232
- Iou Right Patns: 0.9217
- Iou Skin Around Neck Region: 0.9227
- Iou Scarf: nan
- Iou Skirts: 0.7887
- Iou Face: 0.9582
- Iou Left Arm: 0.9436
- Iou Right Arm: 0.9426
- Iou Left Leg: 0.8836
- Iou Right Leg: 0.8767
- Iou Left Shoe: 0.0
- Iou Right Shoe: 0.0
- Iou Left Sleeve For Upper: 0.9005
- Iou Right Sleeve For Upper: 0.9012
- Iou Bag: 0.0232

## Model description

More information needed

```
"id2label": {
    "0": "background",
    "1": "hat",
    "2": "hair",
    "3": "glove",
    "4": "glasses",
    "5": "upper_only_torso_region",
    "6": "dresses_only_torso_region",
    "7": "coat_only_torso_region",
    "8": "socks",
    "9": "left_pants",
    "10": "right_patns",
    "11": "skin_around_neck_region",
    "12": "scarf",
    "13": "skirts",
    "14": "face",
    "15": "left_arm",
    "16": "right_arm",
    "17": "left_leg",
    "18": "right_leg",
    "19": "left_shoe",
    "20": "right_shoe",
    "21": "left_sleeve_for_upper",
    "22": "right_sleeve_for_upper",
    "23": "bag"
}
```

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 16
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Hat | Accuracy Hair | Accuracy Glove | Accuracy Glasses | Accuracy Upper Only Torso Region | Accuracy Dresses Only Torso Region | Accuracy Coat Only Torso Region | Accuracy Socks | Accuracy Left Pants | Accuracy Right Patns | Accuracy Skin Around Neck Region | Accuracy Scarf | Accuracy Skirts | Accuracy Face | Accuracy Left Arm | Accuracy Right Arm | Accuracy Left Leg | Accuracy Right Leg | Accuracy Left Shoe | Accuracy Right Shoe | Accuracy Left Sleeve For Upper | Accuracy Right Sleeve For Upper | Accuracy Bag | Iou Background | Iou Hat | Iou Hair | Iou Glove | Iou Glasses | Iou Upper Only Torso Region | Iou Dresses Only Torso Region | Iou Coat Only Torso Region | Iou Socks | Iou Left Pants | Iou Right Patns | Iou Skin Around Neck Region | Iou Scarf | Iou Skirts | Iou Face | Iou Left Arm | Iou Right Arm | Iou Left Leg | Iou Right Leg | Iou Left Shoe | Iou Right Shoe | Iou Left Sleeve For Upper | Iou Right Sleeve For Upper | Iou Bag |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:------------:|:-------------:|:--------------:|:----------------:|:--------------------------------:|:----------------------------------:|:-------------------------------:|:--------------:|:-------------------:|:--------------------:|:--------------------------------:|:--------------:|:---------------:|:-------------:|:-----------------:|:------------------:|:-----------------:|:------------------:|:------------------:|:-------------------:|:------------------------------:|:-------------------------------:|:------------:|:--------------:|:-------:|:--------:|:---------:|:-----------:|:---------------------------:|:-----------------------------:|:--------------------------:|:---------:|:--------------:|:---------------:|:---------------------------:|:---------:|:----------:|:--------:|:------------:|:-------------:|:------------:|:-------------:|:-------------:|:--------------:|:-------------------------:|:--------------------------:|:-------:|
| 0.0652        | 1.62  | 1000 | 0.0802          | 0.5857   | 0.6166        | 0.9737           | 0.9963              | nan          | 0.9490        | 0.0            | 0.0              | 0.9801                           | 0.4034                             | 0.0                             | 0.0            | 0.9487              | 0.9574               | 0.9272                           | nan            | 0.8783          | 0.9782        | 0.9628            | 0.9534             | 0.8874            | 0.9012             | 0.0                | 0.0                 | 0.9227                         | 0.9197                          | 0.0          | 0.9926         | nan     | 0.9117   | 0.0       | 0.0         | 0.9217                      | 0.3541                        | 0.0                        | 0.0       | 0.9084         | 0.9073          | 0.8963                      | nan       | 0.7766     | 0.9455   | 0.9210       | 0.9191        | 0.8405       | 0.8496        | 0.0           | 0.0            | 0.8673                    | 0.8728                     | 0.0     |
| 0.061         | 3.23  | 2000 | 0.0843          | 0.5977   | 0.6335        | 0.9747           | 0.9967              | nan          | 0.9580        | 0.0            | 0.0              | 0.9657                           | 0.5733                             | 0.1504                          | 0.0            | 0.9591              | 0.9600               | 0.9497                           | nan            | 0.8169          | 0.9789        | 0.9667            | 0.9645             | 0.8906            | 0.9165             | 0.0                | 0.0                 | 0.9444                         | 0.9445                          | 0.0003       | 0.9935         | nan     | 0.9199   | 0.0       | 0.0         | 0.9273                      | 0.4058                        | 0.1206                     | 0.0       | 0.9131         | 0.9082          | 0.9128                      | nan       | 0.7330     | 0.9527   | 0.9355       | 0.9343        | 0.8534       | 0.8651        | 0.0           | 0.0            | 0.8860                    | 0.8879                     | 0.0003  |
| 0.0653        | 4.85  | 3000 | 0.0823          | 0.6000   | 0.6295        | 0.9775           | 0.9967              | nan          | 0.9621        | 0.0            | 0.0              | 0.9780                           | 0.4991                             | 0.0044                          | 0.0            | 0.9587              | 0.9649               | 0.9562                           | nan            | 0.8842          | 0.9769        | 0.9692            | 0.9651             | 0.9198            | 0.9273             | 0.0                | 0.0                 | 0.9422                         | 0.9415                          | 0.0037       | 0.9939         | nan     | 0.9247   | 0.0       | 0.0         | 0.9341                      | 0.4136                        | 0.0042                     | 0.0       | 0.9202         | 0.9193          | 0.9193                      | nan       | 0.7899     | 0.9563   | 0.9403       | 0.9388        | 0.8745       | 0.8741        | 0.0           | 0.0            | 0.8963                    | 0.8970                     | 0.0037  |
| 0.0402        | 6.46  | 4000 | 0.0818          | 0.6023   | 0.6321        | 0.9780           | 0.9969              | nan          | 0.9646        | 0.0            | 0.0              | 0.9747                           | 0.4939                             | 0.0039                          | 0.0            | 0.9604              | 0.9646               | 0.9585                           | nan            | 0.8904          | 0.9796        | 0.9703            | 0.9700             | 0.9267            | 0.9297             | 0.0                | 0.0                 | 0.9462                         | 0.9517                          | 0.0234       | 0.9941         | nan     | 0.9268   | 0.0       | 0.0         | 0.9351                      | 0.4059                        | 0.0035                     | 0.0       | 0.9232         | 0.9217          | 0.9227                      | nan       | 0.7887     | 0.9582   | 0.9436       | 0.9426        | 0.8836       | 0.8767        | 0.0           | 0.0            | 0.9005                    | 0.9012                     | 0.0232  |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.1
- Datasets 2.15.0
- Tokenizers 0.15.0