--- license: mit datasets: - nvidia/Llama-Nemotron-Post-Training-Dataset language: - en - es - ar - fr base_model: - ykarout/phi4-deepseek-r1-distilled-v8-GGUF - microsoft/phi-4 library_name: transformers tags: - deepseek - r1 - reasoning - phi-4 - math - code - chemistry - science - biology - art - unsloth - finance - legal - medical - text-generation-inference --- # Phi-4 DeepSeek Distilled v8 GGUF This repository contains GGUF quantized versions of the Phi-4 DeepSeek R1 Distilled model. These GGUF files are optimized for local inference using frameworks like [llama.cpp](https://github.com/ggerganov/llama.cpp) and [Ollama](https://ollama.ai/) and LM Studio. ## Model Information - **Base Model**: Phi-4 DeepSeek R1 Distilled - **Parameters**: 14.7B - **Architecture**: Phi3 - **Context Length**: 16384 tokens - **Training Data**: Improved version of Phi-4, distilled with DeepSeek R1 Reasoning - **License**: MIT ## Available Quantizations | File | Quantization | Size | Use Case | |------|-------------|------|----------| Q8_0 Q6_K Q5_K_M Q4_K_M ## Chat Template This model uses the ChatML format with the following structure: ``` <|im_start|>system<|im_sep|>System message here<|im_end|> <|im_start|>user<|im_sep|>User message here<|im_end|> <|im_start|>assistant<|im_sep|>Assistant response here<|im_end|> ``` ## Usage with Ollama Create a custom Modelfile (paste this into a file named `Modelfile`): ---------------------------------------------------------------------------------- FROM /replace/with/path/to/your/gguf-file.gguf PARAMETER temperature 0.15 PARAMETER top_p 0.93 PARAMETER top_k 50 PARAMETER repeat_penalty 1.15 TEMPLATE """{{ if .System }}<|im_start|>system<|im_sep|>{{ .System }}<|im_end|>{{ end }}{{ range .Messages }}{{ if eq .Role "user" }}<|im_start|>user<|im_sep|>{{ .Content }}<|im_en>""" PARAMETER stop "<|im_start|>" PARAMETER stop "<|im_end|>" ------------------------------------------------------------------------ Then create and use your model: ollama create phi4-deepseek-r1 -f Modelfile ollama run phi4-deepseek-r1 ## Usage with LMStudio 1. Use the model search option to look up the model from huggingface 2. Download and Load the Model 3. Set the chat parameters (top_p, top_k, repeat_penalty etc...) 4. Chat with the model (LMStudio directly detects the chat template so there is no manual configuration here unlike Ollama) ## Usage with llama.cpp ```bash # Download the model from Hugging Face wget https://huggingface.co/ykarout/phi4-deepseek-r1-distilled-v8-GGUF/resolve/main/phi4-deepseek-r1-distilled-v8-q8_0.gguf # Run the model with llama.cpp ./main -m phi4-deepseek-r1-distilled-v8-q8_0.gguf -n 1024 --color -i -ins --chatml ``` ## Benchmarks & Performance Notes - Q8_0: Best quality, requires ~16GB VRAM for 4K context - Q3_K_M: Good quality with 60% size reduction, suitable for systems with 8GB+ VRAM