--- license: apache-2.0 base_model: ykarout/RPT-DeepSeek-R1-0528-Qwen3-8B tags: - cybersecurity - fine-tuned - deepseek - qwen3 - lora - cyber - nist - csf - pentest language: - en - ar - es - ru - it - de pipeline_tag: text-generation datasets: - Trendyol/Trendyol-Cybersecurity-Instruction-Tuning-Dataset library_name: transformers --- # CyberSec-Qwen3-DeepSeekv1 This is a cybersecurity-specialized fine-tuned model based on DeepSeek-R1-Qwen3-8B. ## Model Details - **Base Model**: ykarout/RPT-DeepSeek-R1-0528-Qwen3-8B - **Fine-tuning Method**: LoRA (Low-Rank Adaptation) - **Dataset**: Trendyol Cybersecurity Instruction Tuning Dataset - **Specialization**: Cybersecurity expertise and guidance ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_name = "ykarout/CyberSec-Qwen3-DeepSeekv1" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True ) # Example usage messages = [ {"role": "system", "content": "You are a cybersecurity expert."}, {"role": "user", "content": "What is a DDoS attack and how can it be mitigated?"} ] input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = tokenizer(input_text, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=512, temperature=0.7, do_sample=True, pad_token_id=tokenizer.eos_token_id ) response = tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True) print(response) ``` ## Training Details - **Framework**: TRL (Transformers Reinforcement Learning) - **Training Method**: Supervised Fine-Tuning (SFT) with LoRA - **Assistant-only Loss**: Custom data collator for training only on assistant responses - **Hardware**: NVIDIA H100 - **Precision**: bfloat16 ## Ethical Use This model is designed for educational and defensive cybersecurity purposes only. Please use responsibly and in accordance with applicable laws and ethical guidelines. ## License Apache 2.0