File size: 31,298 Bytes
b7819dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
---
language:
- en
tags:
- sentence-transformers
- cross-encoder
- generated_from_trainer
- dataset_size:78704
- loss:ListMLELoss
base_model: microsoft/MiniLM-L12-H384-uncased
datasets:
- microsoft/ms_marco
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
model-index:
- name: CrossEncoder based on microsoft/MiniLM-L12-H384-uncased
  results:
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoMSMARCO R100
      type: NanoMSMARCO_R100
    metrics:
    - type: map
      value: 0.0213
      name: Map
    - type: mrr@10
      value: 0.0129
      name: Mrr@10
    - type: ndcg@10
      value: 0.0388
      name: Ndcg@10
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoNFCorpus R100
      type: NanoNFCorpus_R100
    metrics:
    - type: map
      value: 0.2783
      name: Map
    - type: mrr@10
      value: 0.4359
      name: Mrr@10
    - type: ndcg@10
      value: 0.291
      name: Ndcg@10
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoNQ R100
      type: NanoNQ_R100
    metrics:
    - type: map
      value: 0.0331
      name: Map
    - type: mrr@10
      value: 0.018
      name: Mrr@10
    - type: ndcg@10
      value: 0.077
      name: Ndcg@10
  - task:
      type: cross-encoder-nano-beir
      name: Cross Encoder Nano BEIR
    dataset:
      name: NanoBEIR R100 mean
      type: NanoBEIR_R100_mean
    metrics:
    - type: map
      value: 0.1109
      name: Map
    - type: mrr@10
      value: 0.1556
      name: Mrr@10
    - type: ndcg@10
      value: 0.1356
      name: Ndcg@10
---

# CrossEncoder based on microsoft/MiniLM-L12-H384-uncased

This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

## Model Details

### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) <!-- at revision 44acabbec0ef496f6dbc93adadea57f376b7c0ec -->
- **Maximum Sequence Length:** 512 tokens
- **Number of Output Labels:** 1 label
- **Training Dataset:**
    - [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("yjoonjang/reranker-msmarco-v1.1-MiniLM-L12-H384-uncased-plistmle-customweight-sigmoid")
# Get scores for pairs of texts
pairs = [
    ['How many calories in an egg', 'There are on average between 55 and 80 calories in an egg depending on its size.'],
    ['How many calories in an egg', 'Egg whites are very low in calories, have no fat, no cholesterol, and are loaded with protein.'],
    ['How many calories in an egg', 'Most of the calories in an egg come from the yellow yolk in the center.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (3,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'How many calories in an egg',
    [
        'There are on average between 55 and 80 calories in an egg depending on its size.',
        'Egg whites are very low in calories, have no fat, no cholesterol, and are loaded with protein.',
        'Most of the calories in an egg come from the yellow yolk in the center.',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Cross Encoder Reranking

* Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100`
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
  ```json
  {
      "at_k": 10,
      "always_rerank_positives": true
  }
  ```

| Metric      | NanoMSMARCO_R100     | NanoNFCorpus_R100    | NanoNQ_R100          |
|:------------|:---------------------|:---------------------|:---------------------|
| map         | 0.0213 (-0.4683)     | 0.2783 (+0.0173)     | 0.0331 (-0.3865)     |
| mrr@10      | 0.0129 (-0.4646)     | 0.4359 (-0.0639)     | 0.0180 (-0.4087)     |
| **ndcg@10** | **0.0388 (-0.5017)** | **0.2910 (-0.0340)** | **0.0770 (-0.4236)** |

#### Cross Encoder Nano BEIR

* Dataset: `NanoBEIR_R100_mean`
* Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters:
  ```json
  {
      "dataset_names": [
          "msmarco",
          "nfcorpus",
          "nq"
      ],
      "rerank_k": 100,
      "at_k": 10,
      "always_rerank_positives": true
  }
  ```

| Metric      | Value                |
|:------------|:---------------------|
| map         | 0.1109 (-0.2791)     |
| mrr@10      | 0.1556 (-0.3124)     |
| **ndcg@10** | **0.1356 (-0.3198)** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### ms_marco

* Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)
* Size: 78,704 training samples
* Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                                          | docs                                                                                   | labels                                                                                 |
  |:--------|:-----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
  | type    | string                                                                                         | list                                                                                   | list                                                                                   |
  | details | <ul><li>min: 11 characters</li><li>mean: 33.21 characters</li><li>max: 89 characters</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> |
* Samples:
  | query                                                 | docs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | labels                            |
  |:------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
  | <code>how fast can spaceships go</code>               | <code>["The International Space Station travels in orbit around Earth at a speed of roughly 17,150 miles per hour (that's about 5 miles per second!). This means that the Space Station orbits Earth (and sees a sunrise) once every 92 minutes!", "Best Answer: Light is the physical speed limit of the Universe (as far as we know) (scientists take great pains not to declare anything conclusively because things have a habit of being disproven) and the answerer was right, that's about 186,000 miles per second-or - 300,000 kilometers per second.", 'Launched by NASA in 2006, it shot directly to a solar system escape velocity. This consisted of an Earth-relative launch of 16.26 kilometers a second (that’s about 36,000 miles per hour), plus a velocity component from Earth’s orbital motion (which is 30 km/s tangential to the orbital path).', "How fast does a spaceship travel in Earth's orbit and is there a sense of speed? The international space station (taken as an example) orbits earth once every 92 mi...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
  | <code>what is an autoimmune disease definition</code> | <code>["autoimmune disease, one of a large group of diseases characterized by altered function of the immune system of the body, resulting in the production of antibodies against the body's own cells. Some autoimmune disorders, such as Hashimoto's disease, are tissue specific, whereas others, such as SLE, affect multiple organs and systems. Both genetic and environmental triggers may contribute to autoimmune disease. About 5-8% of the U.S. population is affected by an", "Lupus is a chronic inflammatory disease that occurs when your body's immune system attacks your own tissues and organs. Inflammation caused by lupus can affect many different body systems — including your joints, skin, kidneys, blood cells, brain, heart and lungs. ", "Autoimmune diseases arise from an abnormal immune response of the body against substances and tissues normally present in the body (autoimmunity). For a disease to be regarded as an autoimmune disease it needs to answer to Witebsky's postulates (first formulate...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
  | <code>what is a Slingbox</code>                       | <code>["A Slingbox is an audio-video (AV) device that you can use to watch and control your TV wherever you are, on your desktop or laptop computer, phone, tablet, and more. This is called placeshifting. A Slingbox connects to your TV's set-top box, your TV, and your home network.", 'Slingbox Software. Slingbox works in conjunction with the SlingPlayer software you install on your computer. Together, they sling NTSC or PAL video data to another location. It works with regular TV, satellite TV, cable TV, a DVD player, DVR or camcorder.', 'The network connector on the Slingbox then connects to your Internet router with a standard ethernet cable, or wirelessly with a special bridge adapter. An infrared cable from the Slingbox, pointed at your TV or DVR gives you the ability to remotely control them from your computer.', 'The Slingbox is a TV streaming media device made by Sling Media that encodes local video for transmission over the Internet to a remote device (sometimes called placeshifting)....</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
* Loss: [<code>ListMLELoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#listmleloss) with these parameters:
  ```json
  {
      "lambda_weight": "sentence_transformers.cross_encoder.losses.ListMLELoss.ListMLELambdaWeight",
      "activation_fct": "torch.nn.modules.activation.Sigmoid",
      "mini_batch_size": 16,
      "respect_input_order": true
  }
  ```

### Evaluation Dataset

#### ms_marco

* Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)
* Size: 1,000 evaluation samples
* Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                                          | docs                                                                                   | labels                                                                                 |
  |:--------|:-----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
  | type    | string                                                                                         | list                                                                                   | list                                                                                   |
  | details | <ul><li>min: 11 characters</li><li>mean: 33.49 characters</li><li>max: 98 characters</li></ul> | <ul><li>min: 2 elements</li><li>mean: 6.00 elements</li><li>max: 10 elements</li></ul> | <ul><li>min: 2 elements</li><li>mean: 6.00 elements</li><li>max: 10 elements</li></ul> |
* Samples:
  | query                                                                | docs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | labels                            |
  |:---------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
  | <code>where is the great wall of china located</code>                | <code>['Home Other Information Great Wall Facts. Where is the Great Wall of china located?. The Great Wall stretches across North China from east to west for over 6,000 kilometers. It extends from the shanhai pass at the seaside in the Hebei province in the east to the Jiayu pass in Gansu province in the west. The sites of the Great Wall stretch across 15 provinces of China. But since the great wall in Beijing is very long and protected well while most of the great walls in other China areas are not kept well and opened for tourists, it is commonly thought Beijing is the only place to see the Great Wall.', 'The Great Wall is not located in any one given city. Some areas of the Great Wall offer magnificent vistas and picture-perfect brick-and-stone watchtowers, whereas older, pre-Ming areas may be in disrepair yet would certainly impress any archeology aficionado. Very early parts of the Great Wall were constructed from tamped-earth and, where possible, stone.', 'Our Great Wall maps cover the...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
  | <code>do dogs get any nutrition from vegetables</code>               | <code>["Just as fruits and vegetables are considered healthy foods for humans, they can also help prolong a dog's life. Orange, red and yellow fruits and vegetables are best for dogs because they are often nutrient-dense [source: Donomor ]. Many fruits and vegetables also contain antioxidants that reduce the risk of cancer. But not all fruits and vegetables are healthy for your dog. Avoid serving your dog dyed, waxed, or genetically engineered foods; just as with humans, organic foods are best.", 'A good way for dogs to get the full nutrients of the vegetables is to break them down in a pureed form. No matter how you prepare the vegetables for your dogs, do not use salt. Dogs don’t always care for it and it is not good for dogs with heart conditions.', "Despite the belief that dogs are strictly carnivorous, they're actually omnivores that eat a wide variety of plant material -- even in the wild. Like humans, dogs require the nutrients found in a host of vegetables and fruits; however, a few ...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
  | <code>what type of sonnet is composed upon westminster bridge</code> | <code>['From Wikipedia, the free encyclopedia.  Composed upon Westminster Bridge, September 3, 1802  is a Petrarchan sonnet by William Wordsworth describing London and the River Thames, viewed from Westminster Bridge in the early morning. It was first published in the collection Poems, in Two Volumes in 1807. ', "Type of Work. Composed Upon Westminster Bridge is a lyric poem in the form of a sonnet. In English, there are two types of sonnets, the Petrarchan and the Shakespearean, both with fourteen lines. Wordsworth's poem is a Petrarchan sonnet, developed by the Italian poet Petrarch (1304-1374), a Roman Catholic priest. Wordsworth's sonnet Composed upon Westminster Bridge, September 3, 1802 falls into the category of Momentary Poems. The poet is describing what he sees, thinks and feels on a specific day at a specific moment. Had September 3, 1802, been a dismal day of rain, fog or overcast skies, we would not have this lyric to enjoy.", "Rhyme Scheme and Meter. .......The rhyme scheme of ...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
* Loss: [<code>ListMLELoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#listmleloss) with these parameters:
  ```json
  {
      "lambda_weight": "sentence_transformers.cross_encoder.losses.ListMLELoss.ListMLELambdaWeight",
      "activation_fct": "torch.nn.modules.activation.Sigmoid",
      "mini_batch_size": 16,
      "respect_input_order": true
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step     | Training Loss | Validation Loss | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10  | NanoBEIR_R100_mean_ndcg@10 |
|:----------:|:--------:|:-------------:|:---------------:|:------------------------:|:-------------------------:|:--------------------:|:--------------------------:|
| -1         | -1       | -             | -               | 0.0377 (-0.5027)         | 0.2892 (-0.0359)          | 0.0433 (-0.4573)     | 0.1234 (-0.3320)           |
| 0.0002     | 1        | 10.5987       | -               | -                        | -                         | -                    | -                          |
| 0.0508     | 250      | 10.1157       | -               | -                        | -                         | -                    | -                          |
| 0.1016     | 500      | 9.8615        | 9.9241          | 0.0149 (-0.5255)         | 0.2942 (-0.0308)          | 0.0494 (-0.4512)     | 0.1195 (-0.3358)           |
| 0.1525     | 750      | 9.8392        | -               | -                        | -                         | -                    | -                          |
| 0.2033     | 1000     | 9.8483        | 9.9147          | 0.0434 (-0.4970)         | 0.2995 (-0.0256)          | 0.0585 (-0.4421)     | 0.1338 (-0.3216)           |
| 0.2541     | 1250     | 9.8496        | -               | -                        | -                         | -                    | -                          |
| 0.3049     | 1500     | 9.8151        | 9.9134          | 0.0247 (-0.5157)         | 0.2981 (-0.0269)          | 0.0663 (-0.4343)     | 0.1297 (-0.3256)           |
| 0.3558     | 1750     | 9.8153        | -               | -                        | -                         | -                    | -                          |
| **0.4066** | **2000** | **9.8081**    | **9.9129**      | **0.0388 (-0.5017)**     | **0.2910 (-0.0340)**      | **0.0770 (-0.4236)** | **0.1356 (-0.3198)**       |
| 0.4574     | 2250     | 9.8519        | -               | -                        | -                         | -                    | -                          |
| 0.5082     | 2500     | 9.835         | 9.9127          | 0.0349 (-0.5056)         | 0.2944 (-0.0307)          | 0.0551 (-0.4455)     | 0.1281 (-0.3272)           |
| 0.5591     | 2750     | 9.8854        | -               | -                        | -                         | -                    | -                          |
| 0.6099     | 3000     | 9.843         | 9.9126          | 0.0488 (-0.4916)         | 0.2848 (-0.0402)          | 0.0689 (-0.4317)     | 0.1342 (-0.3212)           |
| 0.6607     | 3250     | 9.8305        | -               | -                        | -                         | -                    | -                          |
| 0.7115     | 3500     | 9.875         | 9.9125          | 0.0420 (-0.4985)         | 0.2797 (-0.0453)          | 0.0634 (-0.4372)     | 0.1284 (-0.3270)           |
| 0.7624     | 3750     | 9.8414        | -               | -                        | -                         | -                    | -                          |
| 0.8132     | 4000     | 9.8326        | 9.9125          | 0.0449 (-0.4955)         | 0.2820 (-0.0430)          | 0.0704 (-0.4302)     | 0.1324 (-0.3229)           |
| 0.8640     | 4250     | 9.9309        | -               | -                        | -                         | -                    | -                          |
| 0.9148     | 4500     | 9.8191        | 9.9124          | 0.0460 (-0.4944)         | 0.2821 (-0.0430)          | 0.0567 (-0.4440)     | 0.1282 (-0.3271)           |
| 0.9656     | 4750     | 9.8501        | -               | -                        | -                         | -                    | -                          |
| -1         | -1       | -             | -               | 0.0388 (-0.5017)         | 0.2910 (-0.0340)          | 0.0770 (-0.4236)     | 0.1356 (-0.3198)           |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.5.0.dev0
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.4.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### ListMLELoss
```bibtex
@inproceedings{lan2013position,
    title={Position-aware ListMLE: a sequential learning process for ranking},
    author={Lan, Yanyan and Guo, Jiafeng and Cheng, Xueqi and Liu, Tie-Yan},
    booktitle={Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence},
    pages={333--342},
    year={2013}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->